• Title/Summary/Keyword: Soil damage

Search Result 952, Processing Time 0.024 seconds

Fatigue performance of deepwater steel catenary riser considering nonlinear soil

  • Kim, Y.T.;Kim, D.K.;Choi, H.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • The touch down zone (TDZ) and top connection point of the vessel are most critical part of fatigue damage in the steel catenary riser (SCR). In general, the linear soil model has been used to evaluate fatigue performance of SCRs because it gives conservative results in the TDZ. However, the conservative linear soil model shows the limitation to accommodate real behavior in the TDZ as water depth is increased. Therefore, the riser behavior on soft clay seabed is investigated using a nonlinear soil model through time domain approach in this study. The numerical analysis considering various important parameters of the nonlinear soil model such as shear strength at mudline, shear strength gradient and suction resistance force is conducted to check the adoptability and applicability of nonlinear soil model for SCR design.

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.

Study on Topsoil Erosion Indices for Efficient Topsoil Management (효율적 표토 관리를 위한 표토침식지표 연구)

  • Jung, Younghun;Kum, Donghyuk;Han, Jeongho;Jang, Chunhwa;Yang, Jay E;Lim, Kyoung Jae;Kim, Ki-Sung
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.5
    • /
    • pp.543-555
    • /
    • 2015
  • The existing standard for soil erosion risk assessment has limitations in sustainable topsoil management since the fixed criteria are applied to determination of soil erosion risk areas regardless of land use types. It may not be necessary to apply soil erosion best management practices to agricultural areas with high potential of soil erosion because human or economic damage derived from soil erosion might be tiny in that region. Furthermore, the fixed criterion with absolute values can select too many hot spots of soil erosion to conduct efficient soil erosion management. Thus, objective of this study was to suggest the relative criteria using statistical analysis for efficient soil erosion management. In future, the relative indices for soil erosion prevention should be improved to provide a priority of soil erosion management considering economic damage from soil erosion or functional values of soil with quantitative soil erosion. Additional researches will be needed to reflect a regional characteristics and to consider various land use types and different criteria.

Analysis of Importance of Damaged Area Assessment Indices using Analytic Hierarchy Process (AHP 기법을 활용한 훼손지 평가항목의 중요도 분석)

  • Song, Ki-Hwan;Choi, Yun-Eui;Seok, Young-Sun;Jeon, Seong-Woo;Sung, Hyun-Chan;Seo, Jung-Young;Chon, Jin-Hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.6
    • /
    • pp.15-28
    • /
    • 2020
  • Urbanization and industrialization have caused increasing damage to national lands, and ecological restoration has proceeded without any specific assessment of this damage. The purpose of this study is to select indices to assess damaged areas through literature review and panel discussions, and to derive the importance of damaged area assessment indices by analyzing them through the Analytic Hierarchy Process (AHP). This study has derived, via literature review, six types of damage and a total of 18 related assessment indices. A total of 51 responses were collected from surveys and given to experts, and an AHP analysis conducted. As a result of the analysis, "Landform change (0.268)" was of the highest importance, with associated damage types as follows: "Soil contamination (0.193)", "Vegetation damaged (0.149)", "Surface soil loss (0.143)", "Change in soil physiochemical property (0.125)", and "Vegetation decline (0.122)". The analysis determined that the item of the highest importance in the overall assessment of damage was "Slope occurred area (0.100)", and that "Conductivity (0.022)" was of the lowest importance. This study can be presented as a criterion in determining the type and degree of damage in setting priorities for future ecological restoration projects.

Weather Conditions Drive the Damage Area Caused by Armillaria Root Disease in Coniferous Forests across Poland

  • Pawel Lech;Oksana Mychayliv;Robert Hildebrand;Olga Orman
    • The Plant Pathology Journal
    • /
    • v.39 no.6
    • /
    • pp.548-565
    • /
    • 2023
  • Armillaria root disease affects forests around the world. It occurs in many habitats and causes losses in the infested stands. Weather conditions are important factors for growth and development of Armillaria species. Yet, the relation between occurrence of damage caused by Armillaria disease and weather variables are still poorly understood. Thus, we used generalized linear mixed models to determine the relationship between weather conditions of current and previous year (temperature, precipitation and their deviation from long-term averages, air humidity and soil temperature) and the incidence of Armillaria-induced damage in young (up to 20 years old) and older (over 20 years old) coniferous stands in selected forest districts across Poland. We used unique data, gathered over the course of 23 years (1987-2009) on tree damage incidence from Armillaria root disease and meteorological parameters from the 24-year period (1986-2009) to reflect the dynamics of damage occurrence and weather conditions. Weather parameters were better predictors of damage caused by Armillaria disease in younger stands than in older ones. The strongest predictor was soil temperature, especially that of the previous year growing season and the current year spring. We found that temperature and precipitation of different seasons in previous year had more pronounced effect on the young stand area affected by Armillaria. Each stand's age class was characterized by a different set of meteorological parameters that explained the area of disease occurrence. Moreover, forest district was included in all models and thus, was an important variable in explaining the stand area affected by Armillaria.

A Study on Effects of Oil Contaminated Soil on the Growth of Plant (유류오염토양이 식물식생에 미치는 영향에 관한 연구)

  • Choi, Min-Zoo;Kim, Joo-Young;Kim, Jung-Hoon;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.1
    • /
    • pp.50-56
    • /
    • 2010
  • Oil contamination soil has been one of the most environmental social issues for decades in the inside and outside of country. The law of soil environmental preservation was carried out in the 1990s and the government controlled not only soil environment management and the remediation of contaminated soil but also promoted the development of remedial technology and cleanup business of contaminated soil by national policy. In addition to agriculture areas, the main oil contaminated sites are a gas station, oil reservoir, petro-chemical complex, site of railway carriage base and military camp. The contamination-frequency of agriculture area and effect sites are low but it has significantly important area on account of producing food for human beings. Therefore, we should be concerned about oil contamination damage of agriculture area. The oil contamination damage of agriculture area influenced drop of birth and breeding since the oil directly adheres to seeds and farm products even diffusion of contaminated soil to cultivation area. The studies of the crops and the food vegetation has not enough detailed data caused by the incident of oil contamination. This study investigated the effect of oil in germination and growth of selected plant seeds. In this study, we try to verify whether the oil contamination by accidents on farmland influenced the damage of farm produce and the mutual relation both oil contaminated soil or the vegetation of crops. The impact of oil on plant development was followed by phytotoxicity assessments. The plants exhibited visual symptoms of stress, growth reduction and perturbations in developmental parameters. The increase of the degree of pollution induced more marked effects in plants, likely because of the physical effects of oil. The relationships between the phytotoxicity contents of plants and growth reduction suggest a chemical toxicity of fuel oil. In addition, while cleaned up the contaminated soil under the standard of contaminated soil we examined it was suitable for region standard and it may have practical possibility for fill material of construction of afforestation and molding soil of landfill.

Analysis of factors affecting vegetation cover for stabilization of granite weathered soil forest road cut slopes

  • Seong-Man Kim;Sung-Min Choi;Ye Jun Choe;Yun-Jin Shim;Joon-Woo Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.809-819
    • /
    • 2022
  • This study was conducted to improve the stability of cut slopes of forest roads in granitic weathered soil areas. The study area is a national forest road (road length 28.48 km) in Pyeongchang-gun, Gangwon-do. After data collection, a statistical analysis was performed using IBM SPSS (Ver. 26.0). First, the correlation analysis showed that structure, slope position, soil erosion, slope, and aspect (N, S) were correlated with vegetation coverage (p < 0.05). Elapsed years, slope distance, and aspect (E, W) were found to have no correlation with vegetation coverage. (p > 0.05) Second, one-way ANOVA and Kruskal-Wallis test results showed that vegetation coverage was worse when the slope was located at the top or the middle of the slope than at the bottom of the slope. In addition, the site with sheathing and gabions showed good vegetation coverage when compared with the site without structures. In the case of soil erosion, areas with severe damage and moderate damage showed worse vegetation coverage. Therefore, it is necessary to strengthen the slope angle of the cut soil of the granitic weathered soil area from 1 : 0.5 - 1.2 to 1 : 0.8 - 1.5. In addition, structures such as sheathing and gabions should be installed on granitic weathered land.

The Influence of Combine Crawler Attaching Slurry Spreader on Soil and Growth of Rye (호밀생육과 토양에 미치는 궤도형 분뇨살포기의 영향)

  • Ryoo Jong Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2005
  • This study was conducted to investigate the effect of combine crawler attaching slurry spreader on soil and growth of rye. The performance test at actual field was conducted to test for possibility of practical use. Field test of the slurry spreader was operated in upland and paddy field. Experiments was conducted to compare the effects of the soil damage and crop productivity incorporating Pig slurry by two different types of slurry spreader. In this experiment a slurry spreader using crawler of combine have been designed and developed to enhance the operation in small field and reduce e damage of soil structure. but it was not suitable for transference in long distance. Conventional tractor mounted vacuum is not suitable for $71.6\%$ water condition in the small areas of paddy land. But the slurry spreader using crawler could be controlled the working point and moving by crawler in paddy land of small area. The wheels depths of soil in the supplementary application in the rye field was 4.9 m in tractor mounted spreader. but the wheels depth of crawler attaching spreader was 1.6cm. The dry matter yield of rye was reduced by $12\%$ in supplementary application of slurry due to mechanical damage from passage of the tires. This is particularly noticeable at high soil moisture condition in paddy land. It was concluded that the slurry spreader developed in this study could be successfully used for basal and supplementary application of slurry in rye paddy field.

Comparative Analysis of Structural Damage Potentials Observed in the 9.12 Gyeongju and 11.15 Pohang Earthquakes (9.12 경주지진 및 11.15 포항지진의 구조손상 포텐셜 비교연구)

  • Lee, Cheol-Ho;Kim, Sung-Yong;Park, Ji-Hun;Kim, Dong-Kwan;Kim, Tae-Jin;Park, Kyoung-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.175-184
    • /
    • 2018
  • In this paper, comparative analysis of the 9.12 Gyeongju and 11.15 Pohang earthquakes was conducted in order to provide probable explanations and reasons for the damage observed in the 11.15 Pohang earthquake from both earthquake and structural engineering perspectives. The damage potentials like Arias intensity, effective peak ground acceleration, etc observed in the 11.15 Pohang earthquake were generally weaker than those of the 9.12 Gyeongju earthquake. However, in contrast to the high-frequency dominant nature of the 9.12 Gyeongju earthquake records, the spectral power of PHA2 record observed in the soft soil site was highly concentrated around 2Hz. The base shear around 2 Hz frequency was as high as 40% building weight. This frequency band is very close to the fundamental frequency of the piloti-type buildings severely damaged in the northern part of Pohang. Unfortunately, in addition to inherent vertical irregularity, most of the damaged piloti-type buildings had plan irregularity as well and were non-seismic. All these contributed to the fatal damage. Inelastic dynamic analysis indicated that PHA2 record demands system ductility capacity of 3.5 for a structure with a fundamental period of 0.5 sec and yield base shear strength of 10% building weight. The system ductility level of 3.5 seems very difficult to be achievable in non-seismic brittle piloti-type buildings. The soil profile of the PHA2 site was inversely estimated based on deconvolution technique and trial-error procedure with utilizing available records measured at several rock sites during the 11.15 Pohang earthquake. The soil profile estimated was very typical of soil class D, implying significant soil amplification in the 11.15 Pohang earthquake. The 11.15 Pohang earthquake gave us the expensive lesson that near-collapse damage to irregular and brittle buildings is highly possible when soil is soft and epicenter is close, although the earthquake magnitude is just minor to moderate (M 5+).

An Influence of Protease on Damage of Fiber (Protease가 섬유의 손상에 미치는 영향)

  • Song, Gyeong-Heon;Yang, Jin-Suk;Choe, Jong-Myeong
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.2
    • /
    • pp.224-232
    • /
    • 1998
  • Protease is mixtured in detergent to remove protein-soil easily. It must not act on the any fiber except protein-soil during laundry. So the purpose of this study is to investigate how protease is affect the fiber, particulary the protein-fiber. For this purpose, silk, wool and nylon are selected as samples, and the extent of the damage was estimated as tensile strength and surface condition (that is fibrillation). The results are as follows. The tensile strength of fiber treated with protease were lowered at enzyme concentration 0.1%, temperature 4$0^{\circ}C$ , and, as washing time was longer, it was lowered more. And it was showed that the surface of fibers were fiblliated by protease during washing. From this results, it was found that protease damaged protein-fiber. The damage of silk was the largest of all, and wool was less damaged than silk, because it has the scale (cuticle) on the outside. Additionary, an influence of surfactant on damage of fiber was little about three fibers, but, the fibers were damaged more by the binary nonionic-surfactant and protease mixture than by protease only.

  • PDF