• Title/Summary/Keyword: Soil contamination

Search Result 1,140, Processing Time 0.03 seconds

Dispersion Characteristics of Hazardous Elements for the Stream Sediments of Primary Channels in the Namhae-Hwngye area (남해-화개지역 1차 수계 하상퇴적토의 환경유해원소 분산특성)

  • Park, Yaung-Seog;Park, Dae-Woo;Kim, Jong-Kyun;Hong, In-Hee;Lim, Sung-Tae
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.107-117
    • /
    • 2007
  • Dispersion characteristics and envirounmental impactes of the stream sediments were investigated and geochemical disaster in the Namhae-Hwagye area was predicted. Stream sediments having no possibility of contamination effect and representing drainage basins were collected. Major and hazardous elements concentrations were determined by XRF, ICP-AES and NAA analysis methods. Acid decomposition for the ICP-AES have been used $HClO_4$ and HF with $200^{\circ}C$ heating at 1'st and after that $HClO_4$, HF and HCl with $200^{\circ}C$ heating at 2'nd stage. Hazardous elements concentrations for the stream sediments in the Namhae area were Cu $5.66{\sim}168\;ppm$, Pb $18.0{\sim}40.7\;ppm$, Cr $21.6{\sim}147\;ppm$, Co $4.86{\sim}25.3\;ppm$. Hazardous elements concentrations for the stream sediments in the Hwagye area were Cu $16.4{\sim}41.2\;ppm$, Pb $26.5{\sim}37.5\;ppm$ Cr $79.6{\sim}153\;ppm$, Co $15.7{\sim}29.5\;ppm$. Concentration of Cu and Co in the stream sediments show a negative correlation with $SiO_2$ in all study area. According to E.I.(Enrichment Index) of stream sediments was not enriched in study area. And average E.I. was 0.35 (Namhae) and 0.56 (Hwagye) respectively. The stream sediments were enriched as in order of Pb > Cr > Co > Cu. And the average of Enrichment Factor (E.F.) was 0.46 to 2.84, respectively. E.F. concentration of Cu and Co were nearly similar enrichment characteristic but E.F. concentration of Cr were higher enrichnent characteristic in Namhae than Hwagye area. Pb was highly enriched in all study area but the tolerable level that used to investigate the enrichment degree of hazardous elements, was not exposed to harmful hazardous elements.

Characteristics of Stream and Soil Contamination from the Tailing Disposal and Waste Rocks at the Abandoned Uljin Mine (울진 폐광산의 매립광미와 폐광석에 의한 주변 토양 및 수계의 오염특성)

  • Lee, In-Gyeong;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.63-79
    • /
    • 2008
  • Physicochemical characteristics of stream water, leachate, mine water and groundwater were investigated to estimate the influences of the tailing and waste rock from the abandoned Uljin mine area. Total extraction analysis and mineralogical studies were carried out to understand sulfide weathering and to determine the distributions of trace elements in the soil affected by mine waste (tailing, waste rock and leachate). The pH and EC value of the leachate from the tailing disposal ranged 2.9-6.0, $99{\sim}3,990{\mu}S/cm$, respectively, and the concentrations of dissolved major (up to 492 mg/l Ca; 83.8 mg/l Mg; 45.2 mg/l Na; 44.7 mg/l K, 50.8 mg/l Si) and trace elements (up to $826,060{\mu}g/l$ Fe; $131,230{\mu}g/l$ Mn; $333,600{\mu}g/l$ Al; $61,340{\mu}g/l$ Zn; $2,530{\mu}g/l$ Cu; $573{\mu}g/l$ Cd; $476{\mu}g/l$ Pb) were relatively high. The stream water showed the variation of dissolved metal concentrations in seasonally and spatially. The dissolved metal contents of the stream water increased by influx the leachate from the tailing disposal, but these of the down stream have been considerably decreased by mixing of dilute tributaries. The dissolved metal concentrations of the stream water at dry season (as February) were lower than these at rainy season (as May and July). These represent that the amounts of the leachate varied with season. However, stream water could not be effectively diluted by confluence with uncontaminated tributaries, because the flux of tributaries and streams reduced at dry season. Thus attenuations by dilution had been dominantly happened in rainy seasons. The order of accumulations of trace element in soils compared with background values revealed Mn>Fe>Pb>Cu>Zn. Sulfide minerals were mainly pyrrhotite, sphalerite and galena and chalcopyrite. Pyrrhotite was rapidly weathered along the edge and fractures, and results in the formation of Fe-(oxy)hydroxides, which absorbed a little amount of Zn.

Prevalence of Pathogenic Bacteria in Livestock Manure Compost and Organic Fertilizer (가축분퇴비와 유기질비료에서 병원성박테리아의 분포도 분석)

  • Jung, Kyu-Seok;Heu, Sung-Gi;Roh, Eun-Jung;Lee, Dong-Hwan;Yun, Jong-Chul;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.824-829
    • /
    • 2011
  • In recent years, there has been an increasing public concern about fecal contamination of water, air and agricultural produce by pathogens residing in organic fertilizers such as manure, compost and agricultural by-products. Efforts are now being made to control or eliminate the pathogen populations at on-farm level. Development of efficient on-farm strategies to mitigate the potential risk posed by the pathogens requires data about how the pathogens prevail in livestock manure composts and organic fertilizers. Microbiological analysis of livestock manure composts and organic fertilizers obtained from 32 and 28 companies, respectively, were conducted to determine the total aerobic bacteria count, coliforms, Escherichia coli count and the prevalence of Staphylococcus aureus, Bacillus cereus, Salmonella spp., Escherichia coli O157:H7, Listeria monocytogenes, and Cronobacter sakazakii. The total aerobic bacteria counts in the livestock manure composts and organic fertilizers were in the range of 7 to $9log\;CFU\;g^{-1}$ and 4 to $6log\;CFU\;g^{-1}$, respectively. In the livestock manure composts, coliforms and E. coli were detected in samples obtained from 4 and 2 companies, respectively, in the range of 2 to $5log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In the organic fertilizers, coliforms and E. coli were detected in samples obtained from 4 and 1 companies, respectively, in the range of 1 to $3log\;CFU\;g^{-1}$ and $2log\;CFU\;g^{-1}$. In 3 out 32 compost samples, B. cereus was detected, while other pathogens were not detected. In 28 organic fertilizers, no pathogens were detected. The complete composting process can result in the elimination of pathogens in livestock manure compost and organic fertilizer. The results of this study could help to formulate microbiological guidelines for the use of compost in environmental-friendly agriculture. This research provides information regarding microbiological quality of livestock manure compost and organic fertilizer.

Spectral Response of Red Lettuce with Zinc Uptake: Pot Experiment in Heavy Metal Contaminated Soil (아연섭취에 따른 적상추의 분광학적 반응: 중금속 오염토양에서의 반응실험)

  • Shin, Ji Hye;Yu, Jaehyung;Kim, Jieun;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.52 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This study investigates the spectral response of red lettuce (Lactuca sativa var crispa L.) to Zn concentration. The control group and the experimental groups treated with 1 mM(ZnT1), 5 mM(ZnT2), 10 mM(ZnT3), 50 mM(ZnT4), and 100 mM(ZnT5) were prepared for a pot experiment. Then, Zn concentration and spectral reflectance were measured for the different levels of Zn concentration in red lettuce. The Zn concentration of the control group had the range of 134-181 mg/kg, which was within the normal range of Zn concentration in uncontaminated crops. However, Zn concentration in the experimental group gradually increased with an increase in concentration of Zn injection. The spectral reflectance of red lettuce showed high peak in the red band due to anthocyanin, high reflectance in the infrared band due to the scattering effect of the cell structure, and absorption features associated with water. As Zn concentration in red lettuce leaves increased, the reflectance increased in the green and red bands and the reflectance decreased in the infrared band. The correlation analysis between Zn concentration and spectral reflectance showed that the reflectance of 700-1300 nm had a significant negative correlation with Zn concentration. The spectral band is a wavelength region closely related to the cell structure in the leaf, indicating possible cell destruction of leaf structure due to increased Zn concentration. In particular, 700-800 nm reflectance of the infrared band showed the strongest correlation with the Zn concentration. This study could be used to investigate the heavy metal contamination in soil around mining and agriculture area by spectroscopically recognizing heavy metal pollution of plant.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Study on Geological Distribution of Fluorine in Forest Aggregate within Korea (산림골재 내 불소의 지질학적 분포 연구)

  • Yeong-Il Jeong;Kun-Ki Kim;Soon-Oh Kim;Sang-Woo Lee;Jin-Young Lee
    • Economic and Environmental Geology
    • /
    • v.57 no.2
    • /
    • pp.233-241
    • /
    • 2024
  • This study was conducted to investigate the geological distribution characteristics of fluorine in rocks, which can be a major resource of forest aggregates in Korea. Samples of forest aggregates were collected from 224 sites in 22 cities and counties for this study. The national background concentration was 344 mg/kg, which was significantly lower than the average fluorine concentration of crustal, which was 625 mg/kg, and slightly higher than the average fluorine concentration of world soil, which was 321 mg/kg. In terms of region and tectonic structure, fluorine concentrations were investigated to be highest in Gyeonggi-do(394 mg/kg) and Gyeonggi massif(396 mg/kg), respectively. The concentration distribution by the origin of the parent rock was in the order of metamorphic rock(362 mg/kg) > sedimentary rock(354 mg/kg) > igneous rock(328 mg/kg), and the concentration distribution by geologic ages was the highest in the Paleozoic at 394 mg/kg. The concentration distribution by rock types was in the order of diorite(515 mg/kg) > gneisses(377 mg/kg) > schists(344 mg/kg) > phyllite(306 mg/kg) > granites(305 mg/kg) > quartz porphyry(298 mg/kg). Consequently, it is speculated that gneisses and schists, Precambrian metamorphic rocks in the Gyeonggi massif that forms the crust of Gyeonggi-do, contain high fluorine concentrations.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

The Cesium Removal Using a Polysulfone Carrier Containing Nitric Acid-treated Bamboo Charcoal (질산으로 표면처리한 대나무 활성탄을 첨가한 폴리술폰 담체의 세슘제거 효율 규명)

  • Rahayu, Ni Wayan Sukma Taraning;Kim, Seonhee;Tak, Hyunji;Kim, Kyeongtae;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.529-542
    • /
    • 2020
  • The cesium (Cs) sorption characteristics of a bead-type polysulfone carrier contained HNO3-treated bamboo charcoal (3 - 5 mm in diameter) in water system were investigated and its Cs removal efficiency as an adsorbent from water was also identified by various laboratory experiments. From the results of batch sorption experiments, the bead-type polysulfone carrier with only 5% HNO3-treated bamboo charcoal (P-5NBC) represented the high Cs removal efficiency of 57.8% for 1 hour sorption time. The Cs removal efficiency of P-5NBC in water after 24 hours reaction maintained > 69% at a wide range of pH and temperature conditions, attesting to its applicability under various water systems. Batch sorption experiments were repeated for P-5NBC coated with two cultivated microorganisms (Pseudomonas fluorescens and Bacillus drentensis), which were typical indigenous species inhabited in soil and groundwater. The Cs removal efficiency for two microorganisms coated polysulfone carrier (BP-5NBC) additionally increased by 19% and 18%, respectively, compared to that of only P-5NBC without microorganisms coated. The average Cs desorption rate of P-5NBC for 24 h was lower than 16%, showing the Cs was stably attached on HNO3-treated bamboo charcoal in so much as its long-term use. The maximum Cs sorption capacity (qm) of P-5NBC calculated from the Langmuir isotherm model study was 60.9 mg/g, which was much higher than those of other adsorbents from previous studies for 1 h sorption time. The results of continuous column experiments showed that the P-5NBC coated with microorganisms packed in the column maintained > 80% of the Cs removal efficiency during 100 pore volumes flushing. It suggested that only 14.7 g of P-5NBC (only 0.75 g of HNO3 treated bamboo charcoal included) can successfully clean-up 7.2 L of Cs contaminated water (the initial Cs concentration: 1 mg/L; the effluent concentration: < 0.2 mg/L). The present results suggested that the Cs contaminated water can be successfully cleaned up by using a small amount of the polysulfone carrier with HNO3-treated bamboo charcoal.

Tracking lead contamination sources of sediments in Lake Andong using lead isotopes (납 동위원소를 이용한 안동호 퇴적물 중의 납 오염 기원)

  • Park, Jin-Ju;Kim, Ki-Joon;Yoo, Suk-Min;Kim, Eun-Hee;Seok, Kwang-Seol;Shin, Hyung Seon;Kim, Young-Hee
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.429-434
    • /
    • 2012
  • The objective of this study was to identify Pb pollution sources of sediments in Lake Andong. We analysed Pb isotopes in sediments from Lake Andong, soils and mining tails from the watershed as well as sludges and wastewater from zinc smelting facilities which exists in upper stream of Lake Andong. The Pb isotope ratios ($^{207}Pb/^{206}Pb$ and $^{208}Pb/^{206}Pb$) for sediments are $0.827{\pm}0.004$ and $2.041{\pm}0.015$, which showed similar values with those of mining tails, $0.815{\pm}0.002$ and $2.016{\pm}0.006$, respectively. The isotopic ratio values of soils existed in the range of 0.756~0.881 and 1.872~2.187. In imported zinc ores, the isotopic ratio values existed in the range of 0.816~0.956 (mean 0.832) and 2.029~2.219 (mean 2.059). These values were similar to those in zinc and lead concentrate originated from Canada and South America. Additionally, isotopic ratio values for sludge and wastewater were $17.515{\pm}0.155$, $15.537{\pm}0.018$, and $37.357{\pm}0.173$, respectively. The Pb isotopic ratio of sediments showed binary combination patterns with soil and mining tails, which were similar to those for Korean Pb ore.

Hazard Analysis for the Application of Good Agricultural Practices(GAP) on Paprika During Cultivation (파프리카의 농산물우수관리제도(GAP)적용을 위한 재배단계의 위해요소 분석)

  • Nam, Min-Ji;Chung, Do-Yeong;Shim, Won-Bo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.26 no.3
    • /
    • pp.273-282
    • /
    • 2011
  • This study established hazards which may cause risk to human at farm during cultivation stage of paprika. Samples of plants (paprika, leaf, stem), cultivation environments (water, soil), personal hygiene (hand, glove, clothes), work utensils (carpet, basket, box) and airborne bacteria were collected from three paprika farms (A, B, C) located in Western Gyeongnam, Korea. The collected samples were assessed for biological (sanitary indications and major foodborne pathogens), chemical (heavy metals, pesticide residues) and physical hazards. In biological hazards, total bacteria and coliform were detected at the levels of 1.9~6.6 and 0.0~4.610g CFU/g, leaf, mL, hand or 100 $cm^2$, while Escherichia coli was not detected in all samples. In major pathogens, only Bacillus cereus were detected at levels of ${\leq}$ 1.5 log CFU/g, mL, hand or 100 $cm^2$, while Staphylococuus aureus, Listeria monocytogenes, E. coli O157 and Salmonella spp. were not detected in all samples. Heavy metal and pesticide residue as chemical hazards were detected at levels below the regulation limit, physical hazard factors, such as insects, pieces of metal and glasses, were also found in paprika farms. Proper management is needed to prevent biological hazards due to cross-contamination while physical and chemical hazards were appropriate GAP criteria.