• Title/Summary/Keyword: Soil chemicals

Search Result 370, Processing Time 0.023 seconds

Application of LCA on Lettuce Cropping System by Bottom-up Methodology in Protected Cultivation (시설상추 농가를 대상으로 하는 bottom-up 방식 LCA 방법론의 농업적 적용)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;Kim, Gun-Yeob;So, Kyu-Ho;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1195-1206
    • /
    • 2011
  • This study was conducted to apply LCA (Life cycle assessment) methodology to lettuce (Lactuca sativa L.) production systems in Namyang-ju as a case study. Five lettuce growing farms with three different farming systems (two farms with organic farming system, one farm with a system without agricultural chemicals and two farms with conventional farming system) were selected at Namyangju city of Gyeonggi-province in Korea. The input data for LCA were collected by interviewing with the farmers. The system boundary was set at a cropping season without heating and cooling system for reducing uncertainties in data collection and calculation. Sensitivity analysis was carried out to find out the effect of type and amount of fertilizer and energy use on GHG (Greenhouse Gas) emission. The results of establishing GTG (Gate-to-Gate) inventory revealed that the quantity of fertilizer and energy input had the largest value in producing 1 kg lettuce, the amount of pesticide input the smallest. The amount of electricity input was the largest in all farms except farm 1 which purchased seedlings from outside. The quantity of direct field emission of $CO_2$, $CH_4$ and $N_2O$ from farm 1 to farm 5 were 6.79E-03 (farm 1), 8.10E-03 (farm 2), 1.82E-02 (farm 3), 7.51E-02 (farm 4) and 1.61E-02 (farm 5) kg $kg^{-1}$ lettuce, respectively. According to the result of LCI analysis focused on GHG, it was observed that $CO_2$ emission was 2.92E-01 (farm 1), 3.76E-01 (farm 2), 4.11E-01 (farm 3), 9.40E-01 (farm 4) and $5.37E-01kg\;CO_2\;kg^{-1}\;lettuce$ (farm 5), respectively. Carbon dioxide contribute to the most GHG emission. Carbon dioxide was mainly emitted in the process of energy production, which occupied 67~91% of $CO_2$ emission from every production process from 5 farms. Due to higher proportion of $CO_2$ emission from production of compound fertilizer in conventional crop system, conventional crop system had lower proportion of $CO_2$ emission from energy production than organic crop system did. With increasing inorganic fertilizer input, the process of lettuce cultivation covered higher proportion in $N_2O$ emission. Therefore, farms 1 and 2 covered 87% of total $N_2O$ emission; and farm 3 covered 64%. The carbon footprints from farm 1 to farm 5 were 3.40E-01 (farm 1), 4.31E-01 (farm 2), 5.32E-01 (farm 3), 1.08E+00 (farm 4) and 6.14E-01 (farm 5) kg $CO_2$-eq. $kg^{-1}$ lettuce, respectively. Results of sensitivity analysis revealed the soybean meal was the most sensitive among 4 types of fertilizer. The value of compound fertilizer was the least sensitive among every fertilizer imput. Electricity showed the largest sensitivity on $CO_2$ emission. However, the value of $N_2O$ variation was almost zero.

Improvement of Small Wetland and Stream in Cultivated Area in point of Landscape Ecology (경작지 내 소규모 습지 및 소하천의 경관생태적 개선방안)

  • Cho, Hyun-Ju;Ra, Jung-Hwa;Kim, Jin-Hyo
    • Current Research on Agriculture and Life Sciences
    • /
    • v.29
    • /
    • pp.11-19
    • /
    • 2011
  • This research gives weight to establish practical improvement based on analysis of the landscape ecological character and value to realize the importance of small wetland and stream in cultivated areas functioning as a residual landscape element in rural landscape and to deal with ecological depression effectively. The results of summary are as follows. 1) The results of landscape ecological character analysis of wetlands biotop in total of 7 sites, for example, size of surface in site 5 was widely formed about $10,600m^2$, which was assessed satisfactory in terms of slope of waterfront, width of hedgerow, vegetation condition of composition and so on. Also, The number of flexibility showed 2 in site 8-1, the highest, and morphological diversity showed 1.47, the highest. 2) The results of problem analysis of wetland biotop, most of wetlands are analyzed that the width of hedgerow was below 1m. Also, the 4 wetlands in site 8 are appeared that hard to live slope vegetation in there because of slope of waterfronts are above $45^{\circ}$. 3) The results of landscape ecological character analysis of stream in total of 6 sites, for example, width of waterfront in site 4 showed 55m, the widest, and investigated consist of natural ingredients such as soil, rock, gravel. However, width of waterfront in site 2-2 showed 4m, the narrowest, and inclined angle of slope was formed a right angle. 4) The results of problem analysis of stream, width of waterfront hedgerow in site 2-1 showed about 5m, which was very narrower than width of waterfront, and toxic chemicals discharged from near cultivated area without any filtering. Also, all areas of site 2-2 was formed concrete, and was assessed dissatisfactory in terms of capacity of nature purification, flood control, habitat living space because of straight stream. 5) Based on the result above landscape ecological character and problem analysis, main improvement guidelines are set in terms of shape, vegetation, topography in case of wetlands, and which are set in terms of vertical, horizontal structure in case of stream.

  • PDF

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Environmental Survey on the Cultivation Ground in the West Coast of Korea (서해연안의 양식장 환경조사 3. 부안 백합 양식장 환경)

  • LEE Jeong-Yeol;KIM Young-Gill
    • Journal of Aquaculture
    • /
    • v.4 no.2
    • /
    • pp.111-128
    • /
    • 1991
  • In puan area the environmental surveys were carried out at two farms of hard clam, Meretrix lusoria from April 1987 to November 1978 in order to know heather the farm environments could be rehabilitated for the cultivation of hard clam or not. The range of temperature of surface seawater was $10.7{\~}27.4^{\circ}C$, pH $7.6{\~}8.2$, salinity $22.3{\~}30.3$ ppt, COD $0.20{\~}4.71\;mg/{\ell}$, sulfide $0.04{\~}0.22\;{\mu}g-at./{\ell}$, suspended solid $34.8{\~}199.3\;mg/{\ell}$ chlorophyll a $3.71{\~}49.02\;mg/m^3$, TIN $2.01{\~}24.47\;{\mu}g-a5./{\ell}$, phosphate $0.60{\~}11.03\;{\mu}g-at./{\ell}$ and silicate $4.04{\~}476.36\;{\mu}g-at./{\ell}$. The range of temperature of substratum (bottom soil) was $14.2{\~}29.7^{\circ}C$, pH $8.3{\~}9.5$, water content of substratum was $0.28{\~}0.49\;mg/g$ dried mud, COD $2.80{\~}50.94\;mg/g$ dried mud, total organic matter $1.05{\~}1.97\%$ concentration of total Kjedhal nitrogen $31.9{\~}194.9\;{\mu}g./{\ell}$ dried mud, and sulfide $0.032{\~}0.133\;mg/g$ dried mud. Fine sand was dominant ranging over $92{\~}95\%$ and silt and clay was $2.8{\~}8.1\%$ of the composition of substratum. Some residual agricultural chemicals, ${\alpha},\;{\beta},\;{\gamma}$-BHC, heptachlor, heptachlor-epoxide, aldrin, DDE, DDT and dieldrin were detected in hard clams collected from Puan areas. Especialy, more chemical were detected during the period of rainfalls. From above results, it is considered that the hard clam frams were not yet recovered from deteriorated conditions for aquaculture.

  • PDF

Trend and Further Research of Rice Quality Evaluation (쌀의 품질평가 현황과 금후 연구방향)

  • Son, Jong-Rok;Kim, Jae-Hyun;Lee, Jung-Il;Youn, Young-Hwan;Kim, Jae-Kyu;Hwang, Hung-Goo;Moon, Hun-Pal
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.33-54
    • /
    • 2002
  • Rice quality is much dependent on the pre-and post harvest management. There are many parameters which influence rice or cooked rice qualitys such as cultivars, climate, soil, harvest time, drying, milling, storage, safety, nutritive value, taste, marketing, eating, cooking conditions, and each nations' food culture. Thus, vice evaluation might not be carried out by only some parameters. Physicochemical evaluation of rice deals with amy-lose content, gelatinizing property, and its relation with taste. The amylose content of good vice in Korea is defined at 17 to 20%. Other parameters considered are as follows; ratio of protein body-1 per total protein amount in relation to taste, and oleic/linoleic acid ratio in relation to storage safety. The rice higher Mg/K ratio is considered as high quality. The optimum value is over 1.5 to 1.6. It was reported that the contents of oligosaccharide, glutamic acid or its derivatives and its proportionalities have high corelation with the taste of rice. Major aromatic compounds in rice have been known as hexanal, acetone, pentanal, butanal, octanal, and heptanal. Recently, it was found that muco-polysaccharides are solubilized during cooking. Cooked rice surface is coated by the muco-polysaccharide. The muco-polysaccharide aye contributing to the consistency and collecting free amino acids and vitamins. Thus, these parameters might be regarded as important items for quality and taste evaluation of rice. Ingredients of rice related with the taste are not confined to the total rice grain. In the internal kernel, starch is main component but nitrogen and mineral compounds are localized at the external kernel. The ingredients related with taste are contained in 91 to 86% part of the outside kernel. For safety that is considered an important evaluation item of rice quality, each residual tolerance limit for agricultural chemicals must be adopted in our country. During drying, rice quality can decline by the reasons of high drying temperature, overdrying, and rapid drying. These result in cracked grain or decolored kernel. Intrinsic enzymes react partially during the rice storage. Because of these enzymes, starch, lipid, or protein can be slowly degraded, resulting in the decline of appearance quality, occurrence of aging aroma, and increased hardness of cooked rice. Milling conditions concerned with quality are paddy quality, milling method, and milling machines. To produce high quality rice, head rice must contain over three fourths of the normal rice kernels, and broken, damaged, colored, and immature kernels must be eliminated. In addition to milling equipment, color sorter and length grader must be installed for the production of such rice. Head rice was examined using the 45 brand rices circulating in Korea, Japan, America, Australia, and China. It was found that the head rice rate of brand rice in our country was approximately 57.4% and 80-86% in foreign countries. In order to develop a rice quality evaluation system, evaluation of technics must be further developed : more detailed measure of qualities, search for taste-related components, creation and grade classification of quality evaluation factors at each management stage of treatment after harvest, evaluation of rice as food material as well as for rice cooking, and method development for simple evaluation and establishment of equation for palatability. On policy concerns, the following must be conducted : development of price discrimination in conformity to rice cultivar and grade under the basis of quality evaluation method, fixation of head rice branding, and introduction of low temperature circulation.

Rapid Detection of Radioactive Strontium in Water Samples Using Laser-Induced Breakdown Spectroscopy (LIBS) (Laser-Induced Breakdown Spectroscopy (LIBS)를 이용한 방사성 스트론튬 오염물질에 대한 신속한 모니터링 기술)

  • Park, Jin-young;Kim, Hyun-a;Park, Kihong;Kim, Kyoung-woong
    • Economic and Environmental Geology
    • /
    • v.50 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Along with Cs-137 (half-life: 30.17 years), Sr-90 (half-life: 28.8 years) is one of the most important environmental monitoring radioactive elements. Rapid and easy monitoring method for Sr-90 using Laser-Induced Breakdown Spectroscopy (LIBS) has been studied. Strontium belongs to a bivalent alkaline earth metal such as calcium and has similar electron arrangement and size. Due to these similar chemical properties, it can easily enter into the human body through the food chain via water, soil, and crops when leaked into the environment. In addition, it is immersed into the bone at the case of human influx and causes the toxicity for a long time (biological half-life: about 50 years). It is a very reductive and related with the specific reaction that makes wet analysis difficult. In particular, radioactive strontium should be monitored by nuclear power plants but it is very difficult to be analysed from high-cost problems as well as low accuracy of analysis due to complicated analysis procedures, expensive analysis equipment, and a pretreatment process of using massive chemicals. Therefore, we introduce the Laser-Induced Breakdown Spectroscopy (LIBS) analysis method that analyzes the elements in the sample using the inherent spectrum by generating plasma on the sample using pulse energy, and it can be analyzed in a few seconds without preprocessing. A variety of analytical plates for samples were developed to improve the analytical sensitivity by optimizing the laser, wavelength, and time resolution. This can be effectively applied to real-time monitoring of radioactive wastewater discharged from a nuclear power plant, and furthermore, it can be applied as an emergency monitoring means such as possible future accidents at a nuclear power plants.

Isolation and Characteristics of a Phenol-degrading Bacterium, Rhodococcus pyridinovorans P21 (페놀분해세균 Rhodococcus pyridinovorans P21의 분리 및 페놀분해 특성)

  • Cho, Kwang-Sik;Lee, Sang-Mee;Shin, Myung-Jae;Park, Soo-Yun;Lee, Ye-Ram;Jang, Eun-Young;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.988-994
    • /
    • 2014
  • The effluents of chemical and petroleum industries often contain non-biodegradable aromatic compounds, with phenol being one of the major organic pollutants present among a wide variety of highly toxic organic chemicals. Phenol is toxic upon ingestion, contact, or inhalation, and it is lethal to fish even at concentrations as low as 0.005 ppm. Phenol biodegradation has been studied in detail using bacterial strains. However, these microorganisms suffer from substrate inhibition at high concentrations of phenol, whereby growth is inhibited. A phenol-degrading bacterium, P21, was isolated from oil-contaminated soil. The phenotypic characteristics and a phylogenetic analysis indicated the close relationship of strain P21 to Rhodococcus pyridinovorans. Phenol biodegradation by strain P21 was studied under shaking condition. The optimal conditions for phenol biodegradation by strain P21 were 0.09% $KNO_3$, 0.1% $K_2HPO_4$, 0.3% $NaH_2PO_4$, 0.015% $MgSO_4{\cdot}7H_2O$, 0.001% $FeSO_4{\cdot}7H_2O$, initial pH 9, and $20-30^{\circ}C$, respectively. When 1,000 ppm of phenol was added to the optimal medium, the strain P21 completely degraded it within two days. Rhodococcus pyridinovorans P21 could grow in up to 1,500 ppm of phenol as the sole carbon source in a batch culture, but it could not grow in a medium containing above 2,000 ppm. Moreover, strain P21 could utilize toxic compounds, such as toluene, xylene, and hexane, as a sole carbon source. However, no growth was detected on chloroform.

Effects of Green Manure Crops of Legume and Gramineae on Growth Responses and Yields in Rice Cultivation with Respect to Environment Friendly Agriculture (친환경농업기술 개발을 위한 벼 재배 시 벼의 생육 및 수량에 대한 두과와 화본과 녹비작물의 효과)

  • Song, Beom-Heon;Lee, Kyung-A;Jeon, Weon-Tai;Kim, Min-Tae;Cho, Hyun-Suk;Oh, In-Seok;Kim, Chung-Guk;Kang, Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • The agricultural techniques of environmental friendly using the green manure crops have been required recently more to have the safety agricultural products and to reduce the use of fertilizers and agricultural chemicals. The utilization of green manure crops related closely to cropping system would be very important. The purposes of this study are both to investigate the effects of green manure crops of hairy vetch, legume, and rye, gramineae, and to compare the effects between them in rice cultivation. The hairy vetch and rye were treated as green manure crops into paddy soil at 10 days before the rice transplanting. The plant height was increased gradually from the maximum tillering to the heading growth stage, showing that it was the highest with treatment of conventional cultivation in 2007 and the highest with hairy vetch in 2008. The number of tillers was higher with treatment of hairy vetch and hairy vetch+rye than those with the conventional cultivation. Dry weight was also higher with hairy vetch than that with the conventional, while it was lower clearly in rye than those in hairy vetch and conventional. According to the high tilller number and spikelet number per panicle out of the yield components relatively, the yield of rough rice was increased to about 6% and 8% in 2007 and 2008, respectively, comparing with the yield in the conventional cultivation. Based on these results, the hairy vetch would be a good green manure crop in rice cultivation.

Studies on Direct Sowing-Dry Paddy Rice Culture in the Middle Part of Korea (중부지방에 있어서의 수도건답직파재배 기술체계확립에 관한 시험연구)

  • Jai-Hyoun Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.7 no.1
    • /
    • pp.1-29
    • /
    • 1969
  • Experiments on rice concerning it s varieties, fertilization, seedling dates and herbicides have been conducted to determine the most desirable method of direct sowing cultivation on dry paddy field land in the middle part of Korea. The results obtained at the Office of Rural Development of Choongnam Province are as follows:. 1. Sixteen different derivatives from the main varieties of low land rice were cultivated on a dry paddy field by the direct sowing method; at the same time, a few varieties were tried adopting the common transplanting cultivation method. The yield and yield factors from these two groups were examined to give the following results: a) Compared to the common transplanting cultivation, the direct sowing method showed remarkably increased number of panicles while the number of flowers per panicle was shown to be significantly decreased. The maturing ratio was detected to be lowered. The yield horn them differed according to the different varieties : good yield was obtained from Hokwang while Norin #25 proved poor when compared with the common transplanting cultivation method. b) Among sixteen varieties tested, Sunsou, Norin #25, Jaigou, Hokwang, Palkueng and Gosi showed comparatively high yields, their yield being more than 325 kilograms per 10 Are, but Nampoong, Paldal, Nongkwang, Norin #29, Eunbangju #101 and Shiro gane showed less yield, their yield being less than 271 kilograms per 10 Are, the relations between the yield and the yield factors can be summarized as follows; Number of varieties and their rice yield. 1) The varieties which were great in the, number of panicles and high in yield=Jaigoun, Hokwang Palkueng and Gosi. 2) The varieties which were low in the number of panicles and high in yield=Sounsou and Norin #25. 3) The varieties which were great in the number of panicles and poor in yield=Eunbangju #101 and Sirogane. 4) The varieties which were poor in the number of panicles and poor in yield: Nampung, Paldal and Norin #29. Number of flowers per panicle and yield. 1) The varieties which were great in the number of flowers per panicle and high in yield: Sounsou, Norin #25 and Gosi. 2) The varieties which were poor in the number of flowers per panicle and high in yield ; Jaigoun, Hokwang and Palkueng. 3) The varieties which were great in the number of flowers per panicle and poor in yield: Paldal and Nampung. 4) The varieties which were poor in the number of flowers per panicle and poor in yield: Norin #29. Eunbangju #101 and Sirogane. Maturing ratio and yield. 1) The varieties which were high in the maturing ratio and high in yield: Jaigoun, Sounsou, Norin #25 and Palkueng. 2) The varieties which were low in the maturing ratio and high in yield: Hokwang and Gosi. 3) The varieties which were early maturing rat io and low in yield: Hokwang and Gosi. 4) The varieties which were late maturing ratio and poor in yield: Eunbangju #101, Nampungand Sirogane 1, 000 grain weight and yield. 1) The varieties which were heavy in 1, 000 grains weight and high in yield=Norin #25 and Hokwang. 2) The varieties which were light in 1, 000 grains weight and high in yield=Sounsou and Jaigoun. 3) The varieties which were heavy in 1, 000 grains weight and poor in yield=Nongkwang and Eunbanju. 4) The varieties which were light in 1, 000 grains weight and poor in yield=Norin #29 and Sirogane. 2. The experiment on fertilization showed that the most desirable amount to be given per 10 Are was 10 kilograms of Nitrogen, 5 kilograms of phosphate and 6 kilograms of potassium; and when the Nitrogen given exceeded 8 kilograms, its effect was better when given in amsll consecutive (split) amounts, while the maturing ratio and the number of the flowers per panicle increased when Nitrogen was given in large amount during the later stage of growth of rice. 3. The experiment on the date and amount of seedling showed that the tested variety, Sunsou gave the best results when planted on the days between 25 April and 10 May. Eight liters per 10 Are were preferable if planted early and 12 liters per 10 Are if planted late. The reason why the later planting gave a lower yield was that the number of flowers per panicle was fewer. 4. The experiment on the irrigation for rice with direct sowing cultivation immersed in water showed that it was the most satisfactory when irrigated on 25th June, 55 days after its seedling, its plot giving the best yield. The plots 10th June and 15th July showed just as good results. However, irrigated later, than 15th July it showed lower yields. 5. Compared to the yield of the plot controlled by the common method, the yield from the plots treated with chemical herbicide such as LOROX, TOK, PCP, SWEP, Mo-338 on dry condition soil seemed poorer, but significant difference was not found statistically. On the other hand in the case where chemical herbicides such as TOK, Mo-338, Stam F-34 or ORDRAM were used after irrigation, the yield from the ORDRAM and TOK treated plots did not show significant differences compared to the common hand weed controling method, but those treated with chemicals other than the above showed a lower yield.

  • PDF