• Title/Summary/Keyword: Soil chemical and biological properties

Search Result 144, Processing Time 0.031 seconds

Effects of Organic Amendments on Soil Microbial Community in Red Pepper Field (시용 유기물의 종류가 고추 재배지 토양 미생물상에 미치는 영향)

  • Park, Kee-Choon;Kim, Yeong-Suk;Kwon, Oh-Hoon;Kwon, Tae-Ryong;Park, Sang-Gu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Diverse organic amendments available in local areas have been used to improve soil quality in red pepper field and so the need for investigating the soil chemical and biological properties changed by the organic amendments application is increasing. Soil microbial diversities were measured by phospholipid fatty acid (PLFA) and Biolog $EcoPlate^{TM}$. Compost was most effective for improving soil chemical properties including pH, EC, total nitrogen, P, K, and Ca, and bark increased soil organic matter significantly (P=0.05). Compost increased the fatty acids indicating actinomycetes and vascular arbuscular fungi, and ratio of cy19:0/18:1w7c and monounsaturated fatty acids/saturated fatty acids in soils in PLFA analysis. Bark increased soil fungal indicators in PLFA analysis (P=0.05). Principal component analysis of Biolog EcoPlate data and PLFA differentiated the compost- and bark-amended soils from other organic matteramended soils especially the soil incorporated with compost. More researches are needed to use bark for improving soil microbial properties because the soil chemical and microbiological properties caused by compost and bark are significantly different.

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.

The effect of sewage sludge compost amended soils on the growth of Orchardgrass seedlings (하수오니 첨가토양이 Orchardgrass 유식물체의 생육에 미치는 영향)

  • Lee, Ju Sam
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.2 no.2
    • /
    • pp.77-88
    • /
    • 1994
  • This experiment was carried out to investigate the effect of sewage sludge compost amended soils on the growth and accumulation patterns of heavy metals in plant parts of Orchardgrass seedlings, changes in physical properties and chemical composition, and heavy metal residue in soils. Mixture ratios of sewage sludge compost and soil(loam) were 100:0, 80:20, 60:40, 40:60, 20:80 and 0:100(control), respectively. The results obtained were as follows; 1. The physical properties and chemical compostion of soils were improved by increase in mixture ratios of sewage sludge compost. 2. The biological yield of Orchardgrass seedlings was increased with mixture ratios of sewage sludge compost. 3. The dry weight of shoot(SH) was increased with both of yield components(NT and WT) and biological yield of Orchardgrass seedlings. 4. The total nitrogen concentrations(TN) of plants was increased with quadratically up to the biological yield of 100% mixture ratio of sewage sludge compost. 5. Lead(Pb) concentration of soil in over the 60% mixture ratios of sewage sludge compost were in excess of limiting level(50ppm) of organic fertilizers.

  • PDF

A study on vegetation and soil environmental characteristics of green roof in Daejeon Metropolitan City (대전광역시 옥상녹화 지역의 식생현황 및 토양환경 특성에 관한 연구)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Park, Beom-Hwan;Lee, Hang-Goo;Yun, Joon-Young;Jang, Kwan-Woo;Lee, Seung-Woo;Lee, Ho-Young;Kwon, Oh-Jung;Lee, Sook-Mee;Kil, Sung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.641-649
    • /
    • 2011
  • This study was to analyze the soil environmental characteristics and vegetation status of green roof in Daejeon Metropolitan City. The investigated floras of vascular plants are 17 families, 26 genera, 28 species in Seo-Gu Daejeon District Office Building (SG), 25 families, 49 genera, 56 species in Galma Public Library (GP), and 34 families, 57 genera, 60 species in Daejeon City Hall (DC) respectively. Although the larger area shows the more numbers of species in introduced plants and naturalized plant, the naturalized plant ratios were similar with each other. They were 10.71%, 10.71%, and 11.67% at SG, GP, and DC respectively. As a result of analysis on soil physical property, soil depths including vegetation soil and drainage soil of 3 green roofs were 30cm. The depths of vegetation soil at SG, GP, and DC were 0~8cm, 0~10cm, 0~10cm respectively. As a results of soil chemical properties of our study, soil pH of vegetation soil and drainage soil were a range of 6.42 and 7.43, and a range of 6.55 and 7.43 on the average respectively. Available-P contents of vegetation soil and drainage soil were a range of 153.33 and 366.33mg/kg, and a range of 136.67 and 242.67 mg/kg which is very high, respectively. Carbon contents in soil at vegetation soil and drainage soil were a range of 3.16 and 6.38%, and a range of 1.63 and 2.47% respectively. Carbon storage per square meter within 30 cm were 2.76 kg, 2.99 kg, and 3.66 kg at SG, GP, and DC respectively.

Shifting Cultivation Effects on Soil Environment in Upland Watershed of Bangladesh

  • Haque, S.M. Sirajul;Gupta, Sanatan Das;Miah, Sohag
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.2
    • /
    • pp.179-188
    • /
    • 2014
  • This research reports the effects of shifting cultivation on soil environment collecting samples from 0-5 cm soil depth from five locations viz. at Burburichhara, Maichchari, Longadu, Sukurchhari and Muralipara in Rangamati district of Chittagong Hill Tracts (CHTs). Soil analyses showed that fungal and bacterial population, microbial respiration and active microbial biomass, maximum water holding capacity, conductivity and moisture contents were significantly (at least $p{\leq}0.05$) lower in shifting cultivated soil compared to adjacent mixed tree plantations at all the sites. On an average in soils of 5 different shifting cultivated lands fungal population was $1.33{\times}10^5$ CFU/g dry soil and bacterial population $1.80{\times}10^7$ CFU/g dry soil and in mixed plantations fungal population was $1.70{\times}10^5$ and bacterial population $2.51{\times}10^7$ CFU/g dry soil. Organic matter and exchangeable Ca and Mg contents were significantly (at least $p{\leq}0.05$) lower and bulk density significantly (at least $p{\leq}0.05$) higher in shifting cultivated land in most of the locations compared to adjacent mixed tree plantations. Ratios of microbial respiration and organic carbon as well as active microbial biomass and organic carbon were distinctly lower and pH higher at 3 locations in shifting cultivated soils compared to mixed plantations. Findings of various soil properties, therefore, suggest that shifting cultivation has deteriorating effects on soil environment.

Effects of Nutrient Source on Soil Physical, Chemical, and Microbial Properties in an Organic Pear Orchard (유기질 비료 급원이 배 과원의 토양 물리화학성 및 미생물성에 미치는 영향)

  • Choi, Hyun-Sug;Li, Xiong;Kim, Wol-Soo;Lee, Youn
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.16-23
    • /
    • 2011
  • BACKGROUND: This study was conducted to investigate the effects of different organic treatments and a chemical fertilizer on the soil chemical, physical, and microbial properties in an organic pear orchard. METHODS AND RESULTS: Control was referred as a NPK chemical fertilizer (15N-9P-10K) and organic treatments included compost containing with oil cake, compost containing with humic acid, and compost containing with chitin substance. All treatments applied at rates equivalent to 200 g N per tree per year under the tree canopy in March 30 of 2008 and 2009. Soil bulk density, solid phase, liquid phase, and penetration resistance were not significantly different among the treatments. Organic treatment plots had greater organic matter, total nitrogen, potassium, and magnesium concentrations compared to control, and the nutrient concentrations were not consistently affected by the organic treatments. Microbial biomass nitrogen and carbon, dehydrogenase, acid-phosphatase, and chitinase activities overall increased from March to August. Organic treatments, especially compost containing with oil cake or chitin aicd, increased the microbial variables compared to control. CONCLUSION(s): All the organic treatments consistently stimulated soil biological activity. The consistent treatment effect, however, did not occur on the soil mineral nutrition as the trees actively taken up the nutrients during a growing season, which would have diminished treatment effects. Long-term study required for evaluating soil physical properties in a pear orchard.

Biological Control of Phytopathogenic Fungi by Bacillus amyloliquefaciens 7079; Suppression Rates are Better Than Popular Chemical Fungicides

  • CHUNG SOOHEE;KIM SANG-DAL
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.1011-1021
    • /
    • 2005
  • Rhizobacteria are actively sought for the substitution of chemical fertilizers and pathogen control agents in environment-friendly sustainable agriculture. To be successfully commercialized in the current Korean market as agriculture biomaterials, microbial agents should exhibit both properties of plant growth promotion and pathogen control. That is, the organism must be a phytostimulator as well as a biocontrol agent. These criteria and the survival rate of a rhizobacterium, Bacillus amyloliquefaciens 7079, in the soil system were investigated to evaluate the suitability for future commercialization. B. amyloliquefaciens 7079-treated seedlings showed $22.8\%$ maximum increase in leaf-length growth, compared with water-treated controls, showing the phytostimulating property. The disease suppression rates of Phytophthora-blight of peppers and Fusarium-wilt of tomatoes by B. amyloliquefaciens 7079 were 1.5 and 2.2 times better, respectively, than by three popular chemical fungicides used in actual agricultural practices to control the respective pathogens. Survival of B. amyloliquefaciens 7079 on the rhizoplane and in the rhizosphere was favorable up to 50 days in the soil system employed. These positive properties show that B. amyloliquefaciens 7079 is likely to be a suitable candidate for commercialization to market as agricultural biomaterials.

Biochar for soil carbon sequestration (토양탄소격리를 위한 바이오차)

  • Woo, Seung Han
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.201-211
    • /
    • 2013
  • Biochar is charred materials generated during pyrolysis processes in the absence of oxygen using biomass, resulting in high carbon contents. In recent years, biochar has attracted more increasingly due to its potential role in carbon sequestration, renewable energy, waste management, soil amendment for agricultural use, and environmental remediation. Since biochar has a long-term stability in soil for thousands of years, biochar can be carbon negative compared to carbon-neutral biomass energy that decomposes eventually. Moreover, when biochar is applied to soil, crop production can be largely improved due to its high pH and its superior ability to retain water and nutrients. This paper review the research trends of biochar including the principles of carbon sequestration by biochar, its physico-chemical properties, and its applications on agricultural and environmental area.

Biological Improvement of Reclaimed Tidal Land (I) Desalination Effects of Saline Soil by the Growth of certain Halophytes (해안간척지 토양의 생물학적 토성개량에 관한 연구 (제1보) 수종 염생식물에 의한 간 탁지토양의 제염효과에 대하여)

  • 홍순우
    • Journal of Plant Biology
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 1969
  • Korea has a lots of margin for security of farm land from her coastal region. The area of saline soil may be reached about 10% of present farm land if the reclamation works are finished. This paper was conducted as a part of studying the possibilities of desalination of saline soil through the experiment of some halophytes. The halophytes in this works were Salicornia herbacea L., Suaeda glauca Bunge, chenopodium acuminatum Willd, and Scirpus triquerter L. Of the above halophytes, Salicornia was proved the most effective plant for desalination of saline soil referring to the following results; 1) The seasonal uptake of chloride by Salicornia was the highest of all. However, the general tendencies of all plants showed a decrease on August. 2) Salinity of soil showed the lowest value on the site where Salicornia was grwon densely. Comparing the other sites grouped by age of saline soil with the above site, the salinity of rice-paddy (10 years after reclamation) is similar to those of the site wehre Salicornia were as well as the 50 cm below the surface soil. 3) The maximum water holding capacity of surface soil appeared in the site of Salicornia, but in 50 cm below the surface, the maximum water holding capacity are almost on equat terms having no connection with the age of saline soil. Soil pH, other chemical compositions such as organic matter, magnesium, potassium, phosphorous, and nitrate were determined to elucidate the relationship between the changes of soil properties and chemical uptakes by certain halophytes. It is assumed that the above chemical compositions are frequently affected by the factors such as coastal circulation of salts, exchangeable base, microbial growth, climatic conditions, and irrigation of water.

  • PDF

Stable Macro-aggregate in Wet Sieving and Soil Properties (습식체별에 안정한 대입단과 토양특성과의 관계)

  • Han, Kyung-Hwa;Cho, Hyun-Jun;Lee, Hyub-Sung;Oh, Dong-Shig;Kim, Lee-Yul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.255-261
    • /
    • 2007
  • Soil aggregates, resulting from physico-chemical and biological interactions, are important to understand carbon dynamics and material transport in soils. The objective of this study is to investigate stable macro-aggregate (> 0.25mm diameter) in wet sieving (SM) and their relation to soil properties in 15 sites. The clay contents of soils were ranged from 1% to 33%, and their land uses included bare and cultivated lands of annual upland crops, orchard, and grass. Undisturbed 3 inch cores with five replicates were sampled at topsoil (i.e., 0- to 10-cm depth), for analyzing SM and physico-chemical properties, after in situ measurement of air permeability. SM of sandy soils, with clay content less than 2%, was observed as 0%. Except the sandy soils, SM of soils mainly depended on land uses, showing 27%~35% in soils with annual plants such as vegetable and corn, 51% in orchard, and 75% in grass. This sequence of SM is probably due to the different strength of soil disturbance like tillage with different land uses. SM had significant correlation with cation exchange capacity, organic matter content, sand, clay, silt, bulk density, and exchangeable potassium (K) and magnesium (Mg), whereas fluctuating properties with fertilization such as pH, EC, and water soluble phosphorus weren't significantly correlated to the SM. Particularly, exchangeable calcium (Ca) had significant relation with SM, only except soils with oversaturating Ca. This study, therefore, suggested that SM could perceive different land uses and the change of soil properties in soils, necessarily considering soil textures and Ca over-saturation.