• Title/Summary/Keyword: Soil chamber

Search Result 376, Processing Time 0.024 seconds

Long-term Variation of Radon in Granitic Residual Soil at Mt. Guemjeong in Busan, Korea (화강암 잔류 토양의 토양 가스 중 라돈의 장기적 변화 특성)

  • Moon, Ki-Hoon;Kim, Jin-Seop;Ahn, Jung-Keun;Kim, Hyun-Chul;Lee, Hyo-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.279-291
    • /
    • 2009
  • Radon is a natural radionuclide originated from radioactive decay of radium in rocks and soil. It is colorless, odorless and tasteless elements that mainly distributed as gaseous phase in soil pore space. The present study analyzed the characteristics of long-term radon variation in granitic residual soil at Mt. Guemjeong in Guemjeong-gu, Busan and determined the effects of atmospheric temperature, rainfall and soil temperature and moisture. Periodic measurements of radon concentrations in soil gas were conducted by applying two types of in-situ monitoring methods (chamber system and tubing system). Radon concentration in soil gas was highest in summer and lowest in winter. The variations in soil temperature and atmospheric temperature were most effective factors in the long-term radon variations and showed positive co-relations. The air circulation between soil air and atmosphere by the temperature difference between soil and atmosphere was analyzed a major cause of the variation. However, other factors such as atmospheric pressure, rainfall and soil moisture were analyzed relatively less effective.

A Study on the Soil Respiration in a Quercus acutissima Forest (상수리나무림의 토양호흡에 관한 연구)

  • Lee, Yun-Yeong;Mun, Hyeong-Tae
    • The Korean Journal of Ecology
    • /
    • v.24 no.3
    • /
    • pp.141-147
    • /
    • 2001
  • Soil respiration and some environmental factors which affect soil respiration were studied in an oak forest, Kongju, Korea. Soil respiration was measured at midday of the 15th and 30th day at every month in control(Con), artificial forest gap (Gap) and litter removed area (Lr) with portable CO₂ Analyzer equipped soil respiration chamber. In July, maximum soil respiration in Con, Cap and Lr was 15.6, 11.2 and 7.7 CO₂μmol·m/sup -2/·s/sup -1/, respectively. Respiration in Gap and Lr decreased by 28.6% and 50.6%, respectively, compared with that in Con. Annual amount of soil CO₂ evolution from Con, Gap and Lr was 6.86, 5.84, 3.81 kg·m/sup -2/·yr/sup -1/, respectively. Annual amount of CO₂ evolution in Gap and Lr decreased by 14.8% and 44.5%, respectively, compared with that in Con. Soil respiration rates exponentially increased with temperature. Temperature of soil surface and at 5 cm depth was strongly related to soil respiration rates in Con (r₂=0.87, 0.93), Gap (r₂=0.81, 0.88) and Lr (r/sub 2/=0.89).

  • PDF

Reducing the Effect of Ammonia Emissions from Paddy and Upland Soil with Deep Placement of Nitrogen Fertilizers (질소비료의 심층시비에 의한 논과 밭 토양의 암모니아 배출 억제 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.230-235
    • /
    • 2022
  • BACKGROUND: Ammonia gas emitted from nitrogen fertilizers applied in agricultural land is an environmental pollutant that catalyzes the formation of fine particulate matter (PM2.5). A significant portion (12-18%) of nitrogen fertilizer input for crop cultivation is emitted to the atmosphere as ammonia gas, a loss form of nitrogen fertilizer in agricultural land. The widely practiced method for fertilizer use in agricultural fields involves spraying the fertilizers on the surface of farmlands and mixing those with the soils through such means as rotary work. To test the potential reduction of ammonia emission by nitrogen fertilizers from the soil surface, we have added N, P, and K at 2 g each to the glass greenhouse soil, and the ammonia emission was analyzed. METHODS AND RESULTS: The treatment consisted of non-fertilization, surface spray (conventional fertilization), and soil depth spray at 10, 15, 20, 25, and 30 cm. Ammonia was collected using a self-manufactured vertical wind tunnel chamber, and it was quantified by the indophenol-blue method. As a result of analyzing ammonia emission after fertilizer treatments by soil depth, ammonia was emitted by the surface spray treatment immediately after spraying the fertilizer in the paddy soil, with no ammonia emission occurring at a soil depth of 10 cm to 30 cm. In the upland soil, ammonia was emitted by the surface spray treatment after 2 days of treatment, and there was no ammonia emission at a soil depth of 15 cm to 30 cm. Lettuce and Chinese cabbage treated with fertilizer at depths of 20 cm and 30 cm showed increases of fresh weight and nutrient and potassium contents. CONCLUSION(S): In conclusion, rather than the current fertilization method of spraying and mixing the fertilizers on the soil surface, deep placement of the nitrogen fertilizer in the soil at 10 cm or more in paddy fields and 15 cm or more in upland fields was considered as a better fertilization method to reduce ammonia emission.

A Study on the Stability of Group Piles Installed in the Deep Sea to the Seaquake (해진에 대한, 심해에 설치된 군말뚝의 안정성에 관한 연구)

  • 최용규;남문석;정두환
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.31-42
    • /
    • 2000
  • In this study, the stability of group piles installed in deep sea to the seaquake was studied by performing the calibration chamber model tests for open-ended pipe piles, grouted piles under soil plug and close-ended piles installed in the simulated deep sea. For each case (a single pile, 2-pile and 4-pile groups), series of seaquake tests were performed. While, during the simulated seaquake, the compressive capacity of the single open-ended pile depended on pile penetration depth(=7m), were found to be stable. But, a single grouted pile with penetration depth of 13m kept "mobility" state, the one with penetration depth of 20m was stable and grouted pile groups with penetration depth of 7m were stable regardless of pile penetration depth. By grouting soil plug of open-ended piles and soil under the pile toe of open-ended pipe piles installed in the deep sea, failure of soil plugging was prevented. Thus, close-ended piles were more stable than open-ended pile against the seaquake motionake motion.

  • PDF

EDTA-Enhanced Electrokinetic Removal of Cu and Zn from Contaminated Sandy Soil (동전기 기술과 세척제 EDTA를 이용한 모래 토양으로부터 구리 및 아연의 제거)

  • Lee, Hyo-Sang;Hong, Soon-Myong;Ko, Sung-Hwan;Lee, Ki-Say
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • EDTA-enhanced electrokinetic removal of copper and zinc from contaminated sandy soil was carried out. In desorption equilibrium tests, the required mass ratio of EDTA to metal was 10:1 to obtain over 90% of desorption from soil. The removal of heavy metals with chelating agent EDTA below pH 3 was limited because of EDTA precipitation. In electrokinetic experiments, the pH control at anode chamber was essential and 38% Cu and 56% Zn were removed under 30 mA for 1.5 days. Heavy metal removal was greatly improved by controlling anode and soil pH with circulation of anolyte with NaOH solution, in which >50% heavy metal was removed for 4 days and >70% for 9 days.

  • PDF

Comparing Night Soil Treatment Processes in Aspects of Cost and Energy Consumption (분뇨처리방법의 비용 및 에너지소비 비교)

  • Yoo, Kee Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.38-45
    • /
    • 2008
  • There are still lots of areas where combined sewer pipes are covering in Seoul. All buildings within those areas are equipping septic tanks which take part in separating solids from flushing water of chamber pots. Septic tanks legally demand emptying and cleaning the those inner bodies once a year, resulting the generation of sludge which should be purified using the specified treatment plants as one of environmental infrastructures. Previous research showed that sludge volume continuously increase putting night soil treatment facilities in shortage by 3,549kL a day in 2020, which should be prepared by newly built facilities. This study aimed to define which process is more suitable especially in the points of cost and energy consumption. It was the main results that combining treatment of sewer with night soil, in fact same as nowaday process, is the very positive way beyond the treatment of night soil's own in respects of both costs and energy consumption.

  • PDF

Effect of Application Rate of Hairy Vetch on Ammonia Emission from Paddy Soil (논에서 헤어리베치 시용량에 따른 암모니아 휘산량 평가)

  • Kim, TaeYoung;Daquiado, Aileen Rose;Alam, Faridul;Lee, YongBok
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.375-377
    • /
    • 2012
  • BACKGROUND: Hairy ventch (Vicia villosa) is a good green manure for supplying nitrogen in arable soil. Ammonia emission from rice fields can occur, and the degree of this emission can be great. However, quantitative information of ammonia emission from paddy soil using green manure is required to obtain emission factors for rice cropping in Korea. METHODS AND RESULTS: Ammonia emission from flooding soil with different application rate of hairy vetch was measured using the closed chamber method. For this study, hairy vetch was applied at rates of 0 (control), 500 (H500), 1000 (H1000), 2000 (H2000), and 3000 (H3000) kg/ha (fresh matter basis). This experiment was conducted for 54 days under flooding condition. The total NH3 emission throughout the experiment period was 0.32, 0.54, 1.20, 4.20, and 6.20 kg/ha for control, H500, H1000, H2000, and H3000, respectively. The ratio of NH3 emission to applied nitrogen by hairy vetch for each treatment was 0.7, 1.4, 3.2, and 3.2% for H500, H1000, H2000, and H3000, respectively. CONCLUSION(S): A very small amount of ammonia emission was recorded in the present study. Therefore, the use of hairy vetch in paddy field instead of chemical fertilizer can reduce ammonia emissions.

Suppression of Methane Emission from Rice Paddy Soils with Fly ash Amendment

  • Ali, Muhammad Aslam;Oh, Ju-Hwan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Fly ash, a by-product of the coal-burning industry, and a potential source of ferro-alumino-silicate minerals, which contains high amount of ferric oxide and manganese oxide (electron acceptors), was selected as soil amendment for reducing methane $(CH_4)$ emission during rice cultivation. The fly ash was applied into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plants was measured along with soil Eh and floodwater pH during the cropping season. $CH_4$ emission rates measured by closed chamber method decreased gradually with the increasing levels of fly ash applied but rice yield significantly increased up to 10 Mg $ha^{-1}$ application level of the amendment. At this amendment level, total seasonal $CH_4$ emission was decreased by 20% along with 17% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to suppression of $CH_4$ production by the high content of active and free iron, and manganese oxides, which acted as oxidizing agents as well as electron acceptors. In conclusion fly ash could be considered as a feasible soil amendment for reducing total seasonal $CH_4$ emissions as well as maintaining higher grain yield potential under optimum soil nutrients balance condition.

Computation of Plug Capacity for Open -Ended Piles Driven into Sands (모래지반에 타입된 개단말뚝의 관내토지지력 산정)

  • 백규호;이승래
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.7-16
    • /
    • 1993
  • Calibration chamber tests were conducted on open -ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on plug capacity, The model pile used in the test series was devised so that the bearing capacity of an open -ended pile could be measured out into three components , outside shaft resistance. plug resistance and tip resistance. Under several assumption, the value of earth pressure coefficient in the soil plug is calculated. It is gradually reduced with increase in the longitudinal distance from the pile tip. At the bottom of soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. In comparison of measured and calculated plug capacities using the one -dimensional analysis, we note that API code and one -dimensional analysis combined with P suggested by Randolph et al. and O'Neill et al. result in great underestimation of the plug capacity. Therefore, based on the test results, an empirical equation was suggested to compute the earth pressured coefficient to be used in the calculation of plug capacity using the one -dimensional analysis. and it produces proper plug capacities for all soil conditions.

  • PDF

A Experimental and Numerical Studies of Thermal Flow Motion in a Geothermal Chamber (동결챔버내의 열 흐름에 관한 실험 및 수치해석적 연구)

  • 송원근;김영진;이형일
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.3
    • /
    • pp.219-228
    • /
    • 2003
  • Numerical and experimental studies were conducted on the temperature distribution of a buried steel pipe and surrounding granite frozen soils in the closed system. The relationship between unfrozen water content and temperatures was analysed by laboratory test. The thermal conductivity measurements were made to compare the results with a formula presented by Lachenbruch. A steel container model that consists of a freezing chamber and a buried circular steel pipe was built for the laboratory temperature measurements. The time temperature records were measured experimentally, and those records were compared with numerical results obtained from FEM analysis in order to verify the feasibility. The latent heat effect on the granite frozen soils in the numerical study was considered.