• Title/Summary/Keyword: Soil cation contents

Search Result 139, Processing Time 0.022 seconds

Physical and Chemical Characteristics of Dokdo Soil

  • Lee, Gil-Seong;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.295-304
    • /
    • 2009
  • To understand the properties of soil in Dokdo, we collected soil samples from 12 locations on Seodo and 23 locations on Dongdo, in Dokdo of Gyeongsangbuk-do Province in 2007-2008 and analyzed the soil's physical and chemical characteristics. Sand comprises the largest component (49.37%) of Dokdo soil, followed by silt (40.70%) and clay (9.93%). The soil structure consists mostly of sand loam, followed by loam and silt loam. The pH level of soils from Dokdo varied dramatically among sampling sites and seasons, ranging from 3.36 to 8.02. The total ion content of Dokdo soil also varies greatly among survey places and periods, but in general the total ion content was high in summer when vegetation develops, and low in spring. The exchangeable cation contents of the soil showed low levels in samples where the soil pH was low, including habitats dominated by Agropyron tsukushiense var. transiens and Echinochloa crus-galli, whereas the exchangeable cation contents were high where the organic contents were high, as in habitats dominated by Liriope platyphylla and Artemisia japonica subsp. littoricola. Soil N contents varied greatly among survey sites and higher N contents were found in soil inhabited by Chenopodiaceous plants than in habitats inhabited by other plants. The substantial differences in phosphorus contents among sites were related to excrement of black-tailed gulls. To understand the basic physical and chemical features of the soil on Dokdo, it will be necessary to conduct seasonal and long-term research on soil pH, ion contents, organic contents, N and P, as well as obtaining precise data from samples collected at different depths.

Antioxidant Enzyme Activities and Soil Properties of Healthy and Declining Abies koreana (Wils.) in Mt. Halla (한라산 구상나무 건전개체와 쇠약개체의 항산화효소활성 및 토양특성)

  • Lim, Jong-Hwan;Woo, Su-Young;Kwon, Mi Jeong;Kim, Young Kul
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.14-20
    • /
    • 2007
  • In order to examine the differences in antioxidant enzyme activities which represent defence mechanism to stressful environments, and soil properties between healthy and declining (or unhealthy) trees, we selected three sites, Witseorum, Youngsil and Sungpanak (Jindallebat). Antioxidant enzymes including Ascorbate peroxidase (APX) and Glutathione Reductase (GR), forest soil properties including soil texture, soil pH, organic matter, total nitrogen, available phosphate, cation exchange capacity, exchangeable cation content and nutrient contents in leaves of Abies koreana (Korean fir) trees were analyzed. There were no significant differences between healthy and declining trees in GR activity. However, seasonal difference in antioxidant enzyme activity was observed. GR activity was lower in June and August than that of September. Soil chemical and physical properties of each site showed a tendency that organic content, total nitrogen content, available phosphorus, cation exchange capacity and cation content were lower at the site of declining trees than the site of healthy trees.

The Patterns of Inorganic Cations, Nitrogen and Phosphorus of Plants in Moojechi Moor on Mt. Jeongjok. (정족산 무제치늪 식물의 무기이온, 질소 및 인의 양상)

  • 배정진;추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.109-114
    • /
    • 2003
  • To investigate ecophysiological characteristics of plants species adapted to moor habitat, we selected 22 species plants and analyzed inorganic cations (K, Ca, Mg), heavy metals (Al, Fe, Mn) and total nitrogen and phosphorus quantitatively. Moojechi moor indicated typical acidic and oligotrophic conditions with pH of 5.0∼5.6 (pH 4.3∼5.1 in soil) and EC of 15∼30μ S/cm, and contained very low contents of soil divalent cation such as Ca and Mg but high contents of heavy metals (esp. Al). With respect to inorganic cation contents, investigated plants species showed remarkable interspecific difference. Plant species belonging to J. effusus var. decipiens, M. japonica, I. globosa, M. sacchariflorus, R. mucronulatum, R. yedoense var. poukhanense, H. micrantha, D. rotundifolia showed very low contents of inorganic cation below 400 μ M/g DW, but plant species of C. palustris var. spontanea, L. sessilifolia, P. mandarinorum, C. lineare, S. austriaca sub. glabra, V. mandshurica, A. decursiva showed high cation contents in leaves. Especially, S. austriaca sub. glabra (Compositae) and V. mandshurica (Violaceae) showed pattern accumulating Ca and Mg with plant growth, but I. ensata var. spontanea (Iridaceae) and S. officinalis (Rosaceae) showed decreasing tendency. Meanwhile, most plant species showed low contents of soluble metal ions in leaves in spite of high heavy metal contents on soil, and indicated remarkable interspecific differences in the total contents and composition of heavy metals accumulated. Despite low contents of N and P on soil, most plant species indicated relatively high contents of N and P in leaves at the early stage of growth, and showed slowly decreasing pattern according to growth. Consequently, it seems that plant species inhabited on Moojechi moor cope with acidic-oligotrophic conditions, accumulating inorganic cations and nitrogen at the early growing stage and reutilizing them in the course of growth, and developing heavy metal excluding mechanism.

An Investigation of Characteristics of Chinese Bellflower (Platycodon grandiflorum A.) Cultivated Soil

  • Choi, Jang Nam;Lee, Wang Hyu
    • Korean Journal of Plant Resources
    • /
    • v.31 no.6
    • /
    • pp.660-666
    • /
    • 2018
  • In order to understand the characteristics of soil according to the cultivation environment of Chinese bellflower (Platycodon grandiflorum A.), soil chemical properties of 12 collected soil samples from 6 cultivated fields in Okcheon, Chungbuk province in August. 2017 were analyzed. The soil pH was distributed within the range of 4.61 to 5.25 at all cultivation years and E.C (Electric Conductivity) and T-N (Total Nitrogen) of the cultivation year were not significant. Available $P_2O_5$ was higher than the average for medicinal crops and P. grandiflorum in Korea and C.E.C (Cation Exchange Capacity) was inconsistent for each cultivation year. In particularly, it was validated that the content of exchangeable cations K, Ca, Ma, and Na in this experiment was similar to that of C.E.C according to the cultivation years, because C.E.C had a high correlation with the exchangeable cations. For the available $P_2O_5$, as affected by trans-planting, 5Y-NT-H (cultivated 5 years and non-transplanted) had 58 mg/kg, while 5Y-T-H (cultivated 5 years and transplanted) had 246 mg/kg. The soil pH was found to be lower (acidic) in diseased soils than healthy soils. E.C was confirmed to be was higher in diseased soils than healthy soils except for the one cultivated for 2 years. The contents of T-N and available $P_2O_5$ were higher in diseased soil except for the one cultivated for 5 years and 11 years. The exchangeable cation K and Na tended to be higher in diseased soils rather than that in healthy soils, and the exchangeable cation Ca and Mg contents were higher in healthy soils than in diseased soils. The C.E.C of the soil was lower than that of healthy soils in all of the years except for the one which was cultivated for 5 years (transplanted).

Assessment of The Above-Ground Carbon Stock and Soil Physico-Chemical Properties of an Arboretum within The University of Port Harcourt, Nigeria

  • Akhabue, Enimhien Faith;Chima, Uzoma Darlington;Eguakun, Funmilayo Sarah
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.193-205
    • /
    • 2021
  • The importance of forests and trees in climate change mitigation and soil nutrient cycling cannot be overemphasized. This study assessed the above-ground carbon stock of two exotic and two indigenous tree species - Gmelina arborea, Tectona grandis, Khaya grandifoliola and Nauclea diderrichii and their litter impact on soil nutrient content of an arboretum within the University of Port Harcourt, Nigeria. Data were collected from equal sample plots from the four species' compartments. Tree growth variables including total height, diameter at breast height, crown height, crown diameter and merchantable height were measured for the estimation of above-ground carbon stock. Soil samples were collected from a depth of 0-30 cm from each compartment and analyzed for particle size distribution, organic carbon, total nitrogen, available phosphorus, exchangeable bases, exchangeable acidity, cation exchange capacity, base saturation, pH, Manganese, Iron, Copper and Zinc. Analysis of Variance (ANOVA) was used to test for significant difference (p<0.05) in the carbon contents of the four species and the soil nutrient contents of the different species' compartments. Pearson correlation was used to assess the relationships between the carbon contents, growth parameters and soil parameters. The highest and lowest carbon stock per hectare was observed for G. arborea (151.52 t.ha-1) and K. grandifoliola (45.45 t.ha-1) respectively. Cation exchange capacity and base saturation were highest and lowest for soil under G. arborea and K. grandifoliola respectively. The pH was highest and lowest for soil under G. arborea and T. grandis respectively. Carbon stock correlated positively with dbh, crown diameter, merchantable height and Zn and negatively with base saturation. The study revealed that G. arborea and N. diderrichii can effectively be used for reforestation and afforestation programmes aimed at climate change mitigation across Nigeria. Therefore, policies to encourage and enhance their planting should be encouraged.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Determination of Exchangeable Cations in Soils Affected by Different Types of Salt Accumulation (염류집적 유형이 다른 토양의 교환성 양이온 측정)

  • Lee, Ye-Jin;Yun, Hong-Bae;Kim, Rog-Young;Lee, Jong-Sik;Song, Yo-Sung;Sung, Jwa-Kyung;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.135-142
    • /
    • 2012
  • Exchangeable cations are often overestimated especially in salt-affected soils due to the presence of high levels of soluble ions in soil solution. Thus, quantitative analysis of the soil exchangeable cation based on ammonium acetate extraction method {(Exch. Cation)$_{total}$} requires additional process to remove the free ions (pre-washing) in soil with distilled water or alcohol {(Exch. Cation)$_{pw}$} or subtraction of the soluble ion contents from the total exchangeable cations {(Exch. Cation)$_{ref}$}. In this research, we compared the three different methods for the determination of exchangeable cations in soils affected by different types of salt accumulation such as the soils from upland, plastic film house, and reclaimed tidal land. In upland soils, non-saline and non-sodic soils, the regular ammonium acetate extraction method did not have any problem to determine the content of exchangeable cations without any additional process such as the pre-washing method or the subtraction method. However, the contents of exchangeable cations in the salt-affected soils might be determined better with the pre-washing method for the plastic film house soils and with the subtraction method for the reclaimed tidal land soils containing high Na.

Physicochemical Properties of Forest Soils Related to Sulfate Adsorption (황산이온의 흡착에 관여하는 산림토양의 물리화학적 특성)

  • Lee, Seung-Woo;Park, Gwan-Soo;Lee, Choong-Hwa;Kim, Eun-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.371-377
    • /
    • 2004
  • Sulfate adsorption in forest soils is a process of sulfur dynamics playing an important role in plant uptake, cation movement, acid neutralization capacity and so on. The relationship between sulfate adsorption and some physicochemical properties of four forest soils was investigated. Extractable sulfate contents and sulfate adsorption capacity (SAC) in the forest soils varied much among study sites. Extractable sulfate contents were more in sub-surface soils with lower organic matter and greater Al and Fe oxides than in surface soils. The average contents of $Al_d$ and $Fe_d$ in the sub-surface soils were 8.49 and $12.45g\;kg^{-1}$, respectively. Soil pH, cation exchange capacity and clay content were positively correlated with the extractable sulfate contents and SAC. Organic carbon content, however, was negatively correlated with the extractable sulfate contents, implying the competitive adsorption of sulfate with soil organic matter. Considerably significant correlation was found between inorganic + amorphous Al and Fe oxides and the sulfate adsorption, but crystalline Al and other fractions of Fe oxide showed no correlation. Relatively close relationship between the adsorbed sulfates and soil pH, cation exchange capacity, or amorphous Al oxides indicates that the accelerated soil acidification may substantially reduce the potential for sulfate adsorption contributing to sulfur flux in forest ecosystems.

Effect of Functionally-strengthened Fertilizers on Garlic Growth and Soil Properties

  • Li, Jun-Xi;Wee, Chi-Do;Sohn, Bo-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.308-315
    • /
    • 2011
  • Ammonium- and potassium-loaded zeolite (NK-Z) and other four kinds of environmental friendly fertilizers/agents were applied to characterize their effectiveness on garlic (Allium sativum L.) growth and soil amelioration. Selenium dioxide ($SeO_2$) and germanium dioxide ($GeO_2$) liquid treatments significantly increased selenium (Se) and germanium (Ge) contents in garlic stems, garlic cloves and clove peels. In soil treated with ZBFC, Se contents in garlic stems, cloves, and clove peels was 13.89-, 12.79-, and 10.96-fold higher, respectively, than in the controls. The inorganic contents of plants grown in soil treated with functional strengthened fertilizers were also higher than in plants grown in control soil. Soil treated with arbuscular mycorrhizal fungi (AMF) agents exhibited significantly greater spore density and root colonization rate than in untreated soil. The density of chitinolytic microorganisms in soil treated with colloidal chitin was also significantly higher than in untreated soil. The cation exchange capacities (CEC) in ZAFC-, ZBFC-, and ZBF-treated soils was 16.05%, 8.95%, and 8.80% higher than in control soil 28 weeks after sowing.

Cation Deficiencies in Needles and Fine Roots of Pitch Pine in Seoul Metropolitan Area (首都圈地域에서 리기다소나무 잎과 잔뿌리 속의 陽이온 부족)

  • Rhyu, Tae-Cheol;Kim, Kee-Dae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 1994
  • The contents of major elements were determined in current-year and previous-year needles and fine roots of pitch pine (Pinus yzgida) at 33 sites in Seoul and its vicinity. Contrary to Ca and Al in needles, N, P, Mg and K contents in current-year needles were higher than those in previous-year needles. The N, P, K and Al contents in current-year needles in Seoul were not significantly different from those in rural areas. In contrast, Ca and Mg contents in needles in Seoul were significantly lower than those in suburbs and rural areas. The N /Ca and N /Mg ratios in needles in urban Seoul were higher than those in rural areas. Mg contents in fine roots in soil of 0-5 cm depth increased along with distance from the center of Seoul, while Al contents in fine root in soil of 5-10 cm depth decreased along with distance from the center of Seoul. Al contents in fine roots in soil layer in Seoul and suburbs were higher than those in rural areas. Al contents in fine roots in litter layer were 1 /3 - 1 /2 times lower than those in soil layer for all areas. A1 content in fine roots in deep soil was higher than that in top soil. Therefore growth decline of pitch pine in Seoul and suburbs was thought to be caused by Ca and Mg deficiency in plant tissues and Al toxicity to fine roots. Abnormal vertical distribution of fine roots of pitch pine in Seoul and its vicinity were interpreted as the result of growth reduction of fine roots by Al toxicity in deep layer of acid soil.

  • PDF