• Title/Summary/Keyword: Soil biofilter

Search Result 34, Processing Time 0.026 seconds

Stabilization of Soil Moisture and Improvement of Indoor Air Quality by a Plant-Biofilter Integration System (식물-바이오필터에 의한 토양수분 안정화 및 실내 공기질 향상)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.5
    • /
    • pp.751-762
    • /
    • 2015
  • This study was performed to investigate the stability of soil moisture in controlling air ventilation rate within a horizontal biofilter, and to compare removal efficiency (RE) of indoor air pollutants including fine dust, volatile organic compounds (VOCs), and formaldehyde (HCHO), depending on whether dieffenbachias (Diffenbachia amoena) were planted in the biofilter. The relative humidity, air temperature, and soil moisture contents showed stable values, regardless of the presence of D. amoena, and the plants grew normally in the biofilter. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter filled with only soil were at least 30% and 2%, respectively. REs for number of fine dust particles (PM10 and PM2.5) within the biofilter including the plants were above 40% and 4%, respectively. RE for fine dust (PM10) weight was above 4% and 20%, respectively, in the biofilter containing only soil or soil together with plants. In the case of the biofilter filled with only soil, REs for xylene, ethylbenzene, toluene or total VOC (T-VOC) were each more than 63%; however, REs for benzene and formaldehyde (HCHO) were above 22% and 38%, respectively. In the biofilter with the plants, REs for xylene, ethylbenzene, toluene, and T-VOC were each above 72%, and REs for benzene and HCHO were above 39%. Thus, RE of the biofilter integrated with plants was found to be higher for volatile organic compounds than for fine dust. Hence, the biofilter was very effective for indoor air quality improvement and the effect was higher when integrated with plants.

A Study on the Effects of Retardation with Pb in the Biofilter (생물여과층에 의한 납의 이동억제효과에 관한 연구)

  • 이문현;이재영;최상일
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.99-105
    • /
    • 2000
  • The purpose of this study was to show the application of the Biofilter for treatment of the soil contaminated by lead and to investigates the effect of the biofilter on the retardation of lead with pilotplants that were simulated with different media and the number of bed. and to testify the inoculation by seeding microbes. The ratio of the degradation of soil contaminant was verified as CODcr/TOC in order to find a variation of the stabilization index in soil. The Biofiltration was one of biological processing methods for treatment. The contaminants were transported through the biofilter that was filled with the media. The surface of media formed biofilm which was surrounded by microbes and through its boundary, some materials were exchanged and migrated into the cell of microbes in an orderly manner. To investigate the effect of the Biofiltration, contaminated soil with lead nitrate of 1000mg/kg in dry was made artificially. The tests were simulated such as compost, Bioceramic and compost with bioceramic by 7:3 in weight. The bed consisted of three layers in order to find effect of the number of bed. Aspergillus niger was used as a biosorbent could probe the effect on the retardation of lead.

  • PDF

Biofilter를 이용한 diesel VOCs의 생물학적 제거

  • 이은영;최우진;최진규;김무훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.347-350
    • /
    • 2002
  • The petrochemical products can cause soil and groundwater contamination during their transportation and the use of the products, and while being contained in underground storage tanks(USTs) throughout the leakage. To treat the contaminated soil, the bioventing method is suitable for the remediation of semi-volatile compounds, such as diesel and kerosene. Biofiltration is one of possible method to treat the off-gas produced in the process of the bioventing. This study is related to the usage, effectiveness of treatment, and feasibility of two types of biofilter system made of ceramic-compost and polymer respectively to treat diesel VOCs at constant retention time of 20 sec. Compost biofilter showed the average removal efficiency of 73 % when the inlet concentration increased to 20 ppmv. Increased the inlet concentration decreased the microbial activities as well as the removal efficiency. On the contrary, the removal efficiency of the polyurethane biofilter was maintained at 88 % at the inlet concentration of 13 ppmv during ten days and was obtained to 80 % at the inlet concentration of 30 ppmv in spite of the drop of the efficiency in the sudden increase of the inlet concentration. At the beginning of the experiment it showed low removal efficiency at low inlet concentration due to the low microbial activity, however, as experiments proceed the removal efficiency could be obtained more than 80% at high inlet concentration.

  • PDF

Evaluation of field application of biocover and biofilter to reduce landfill methane and odor emissions (매립지 메탄 및 악취 배출 저감을 위한 바이오커버 및 바이오필터의 현장적용 평가 연구)

  • Chae, Jeong-Seok;Jeon, Jun-Min;Oh, Kyeong-Cheol;Ryu, Hee-Wook;Cho, Kyung-Suk;Kim, Shin-Do
    • Journal of odor and indoor environment
    • /
    • v.16 no.2
    • /
    • pp.139-149
    • /
    • 2017
  • In order to reduce odor and methane emission from the landfill, open biocovers and a closed biofilter were applied to the landfill site. Three biocovers and the biofilter are suitable for relatively small-sized landfills with facilities that cannot resource methane into recovery due to small volumes of methane emission. Biocover-1 consists only of the soil of the landfill site while biocover-2 is mixed with the earthworm casts and artificial soil (perlite). The biofilter formed a bio-layer by adding mixed food waste compost as packing material of biocover-2. The removal efficiency decreased over time on biocover-1. However, biocover-2 and the biofilter showed stable odor removal efficiency. The rates of methane removal efficiency were in order of biofilter (94.9%)>, biocover-1(42.3%)>, and biocover-2 (37.0%). The methane removal efficiency over time in biocover-1 was gradually decreased. However, drastic efficiency decline was observed in biocover-2 due to the hardening process. As a result of overturning the surface soil where the hardening process was observed, methane removal efficiency increased again. The biofilter showed stable methane removal efficiency without degradation. The estimate methane oxidation rate in biocover-1 was an average of 10.4%. Biocover-2 showed an efficiency of 46.3% after 25 days of forming biocover. However, due to hardening process efficiency dropped to 4.6%. After overturn of the surface soil, the rate subsequently increased to 17.9%, with an evaluated average of 12.5%.

Effect of Biofilter on Reducing Malodor Emission (악취 발산감소를 위한 필터의 이용 효과)

  • 김원영;정광화;노진식;김원호;전병수;류호현;전영륜
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.161-166
    • /
    • 1998
  • Controlling malodor originating from livestock feces has become a major issue, due to its influence on the health of man and livestock, together with its influences on atmospheric pollution. In this study, Five types of biofilters filled with saw-dust, night soil, fermented compost, leaf mold and a mixture(a compound of night soil, fermented compost and leaf mold at the same rates, respectively) were manufactured and tested. To study the effect of the biofilter on reducing malodor in a composting facility and swine building, a pilot scale composting facility enclosed with polyethylene film was constructed. Swine feces was composted in the facility and malodorous gas generated from the decomposition of organic matter in the feces was gathered by vacuum pump. Each biofilter achieved 87∼96% NH3 removal efficiency. This performance was maintained throughout 10 days of operation. The highest NH3 removal efficiency was achieved by leaf mold on the first day of operation period. It reduced the concentration of NH3 by about 96%. Night soil and fermented compost showed nearly equal performance of 93 to 94% for 10 days from the beginning of operation. The mixture achieved the lowest NH3 removal efficiency. It reduced NH3 concentration by about 89∼94% for 10 days from the beginning of operation. However NH3 removal efficiency of each biofilter declined with the passage of operational time. After 30 days from the beginning of operation, NH3 removal efficiency of each biofilter of each biofilter was below 60%, respectively. The concentration of H2S and CH3-SH originating from compost were equal to or less than 5mg/l and 3mg/l, respectively. After passing throughout the biofilter, the concentration of H2S and CH3-SH were not detected.

  • PDF

The Development of a Biofilter to Reduce Atmospheric Methane Emissions from MSW Landfills

  • Park, Soyoung;K.W. Brown;J.C. Thomas
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.73-76
    • /
    • 2002
  • Biofilter performance to reduce C $H_4$ emissions from MSW landfills was tested under a variety of environmental and design conditions. The optimum soil moisture content for C $H_4$ oxidation in a loamy sand was 13% by weight. The addition of N $O_3$-N did not affect the C $H_4$ oxidation rate. Soil depths of 30cm and 60cm were equally efficient in C $H_4$ oxidation. When the C $H_4$ loading rate was decreased, the percentage of C $H_4$ oxidized increased. The maximum C $H_4$ oxidation rate was 27.2 mol $m^{-2}$ $d^{-1}$ under optimum conditions (loamy sand soil, 13% moisture content, 30cm soil depth, and an loading rate of 32.8 mol $m^{-2}$ $d^{-1}$). Based on the above results, the installation of a properly sized and managed biofilter above a landfill cover should be capable of achieving a major reduction in atmospheric methane emissions from MSW landfills built with RCRA covers.

  • PDF

Stabilization of Soil Moisture and Plant Growth on a Botanical Biofilter with a Wick-Typed Humidifying Apparatus (심지형 가습장치를 이용한 식물바이오필터의 토양수분 및 식물 생육의 안정성)

  • Kim, You Na;Chun, Man Young;Lee, Chang Hee
    • Korean Journal of Plant Resources
    • /
    • v.29 no.5
    • /
    • pp.579-587
    • /
    • 2016
  • The final goal of this research is to develop a miniaturized botanical biofilter using a wick-typed automatic humidifier for stabilizing soil moisture content (SMC) and purifying indoor air pollutants by the biofilter. This new biofilter equipped with wick-typed automatic humidifier was manufactured as more compacted design removing an absorption tower-typed humidifier compared with the previous big-sized biofilter made in 2015. This study was performed to compare changes of SMCs among floors depending on the number of wicks installed on the humidifier within the novel biofilter, and to compare changes of SMCs and plant growth parameters before and after planting Spathiphyllum wallisii ‘Mauna Loa’ on the biofilter. SMCs among floors depending on the number of wicks were similar, and all regression lines of SMCs showed almost horizontal lines because of long-term stability on SMCs. Comparing plant growth parameters of S. wallisii ‘Mauna Loa’ before planting and at 30 days after planting on the biofilter, all growth parameters were not statistically significant. Thus, SMCs of the biofilter were more stabilized using this humidifying apparatus regardless of the number of wicks than the previous biofilter using absorption tower-typed humidifying apparatus.

Performance Evaluation of a Double Layer Biofilter System to Control Urban Road Runoff (I) - System Design - (이중층 토양 여과시설을 이용한 도로 강우 유출수 처리성능 평가 (I) - 시설 설계인자 결정을 중심으로 -)

  • Cho, Kang Woo;Kim, Tae Gyun;Lee, Byung Ha;Lee, Seul Bi;Song, Kyung Guen;Ahn, Kyu Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.599-608
    • /
    • 2009
  • This manuscript covers the results of field investigation and lab-scale experiments to design a double-layered biofilter system to control urban storm runoff. The biofilter system consisted of a coarse soil layer (CSL) for filtration and fine soil layer (FSL) for adsorption and biological degradation. The variations of flow rate and water quality of runoff from a local expressway were monitored for seven storm events. Laboratory column experiments were performed using seven kinds of soil and mulch to maximize pollutants removal. The site mean concentration (SMC) of storm runoff from the drainage area (runoff coefficient: 0.92) was measured to be 203 mg/L for SS, 307 mg/L for $TCOD_{Cr}$, 12.3 mg/L for TN, 7.3 mg/L for ${NH_4}^+-N$, and 0.79 mg/L for TP, respectively. This study employed a new design concept, to cover the maximum rainfall intensity with one month recurrence interval. Effective storms for last ten years (1998-2007) in seoul suggested the design rainfull intensity to be 8.8 mm/hr Single layer soil column showed the maximum removal rate of pollutants load when the uniformity coefficient of CSL was 1.58 and the silt/clay contents of FSL was virtually 7%. The removal efficiency during operation of double layer soil column was 98% for SS and turbidity, 75% for TCODCr, 56% for ${NH_4}^+-N$, 87% for TP, and 73-91% for heavy metals. The hydraulic conductivity of the soil column, 0.023 cm/sec, suggested that the surface area of the biofilter system should be about 1% of the drainage area to treat the rainfall intensity of one month recurrence interval.

Application of Biofilter for the Removal of VOCs Produced in the Remediation of Oil-Contaminated Soil (유류오염 토양의 복원과정에서 발생되는 휘발성 유기화합물의 제거를 위한 바이오필터의 적용)

  • Lee Eun Young;Choi Woo-Zin;Choi Jin-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • This research was investigated the applicability of the biofiltration technology for the removal of volatile organic carbons (VOCs) produced from the bioremediation of oil contaminated soil. Diesel was used as surrogate for oil and, two types of biofilter systems made of ceramic and polymer media were compared for the removal efficiencies of diesel VOCs at different inlet concentrations and space velocity (SV) conditions. During the first 30-d operation, the removal efficiencies of the biofilter packed with polymer and the biofilter packed with ceramic were investigated at constant SV of $153\;h^{-1}$ When inlet concentrations of diesel VOCs were below 10 ppmv, the average removal efficiencies of the polymer biofilter and the ceramic biofilter were average $67\%\;and\;75\%$, respectively. When the inlet concentration increased to 30 ppmv, the VOC removal efficiency in the polymer biofilter was $80\%$, while the average removal efficiency in the ceramic biofilter was $60\%. Effect of the inlet concentration and SV on the removal efficiency of total diesel VOCs was investigated. As SV increased from $153\;h^{-1}$ to $204\;h^{-1}$ and $306\;h^{-1}$, the removal efficiency of total diesel VOCs was decreased gradually. The average removal efficiency of the biofilter packed with polymer carrier was decreased from $82\%\;to\;80\%\;and\;77\%$. The biofilter packed with polymer carrier showed that the removal efficiency of benzene and toluene were maintained within the range of $81\%\~86\%$. In contrast, for the biofilter packed with ceramic carrier, when SV increased from $153\;h^{-1}$ to $204\;h^{-1}$ and $306\;h^{-1}$, the removal efficiency of benzene decreased from $87\%\;to79\%\;and\;74\% . respectively. The removal efficiency of toluene decreased from $80\%\;to\;77\%\;and\;76\%$ at SV of $153\;h^{-1},\;204\;h^{-1}\;and\;306\;h^{-1}$, and $306\;h^{-1}$, respectively.

Effect of Residence time on Mixed Benzene and Ethylene Degradation in Biofilters (Biofilter에서 체류시간이 혼합 벤젠과 에틸렌 분해에 미치는 영향)

  • 김종오
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.42-47
    • /
    • 2003
  • A biofilter study was performed in order to remove mixed benzene and ethylene emitted from soil and groundwater remediation. In particular, more than 96% of ethylene was removed at residence times of 10~15 min, and the possibility of use of the biofilter was obtained. The benzene removal efficiency was achieved as much as 100% at residence times of 2~15 min. With a residence time of 15 min, the maximum elimination capacity of benzene and ethylene was 4.3 g/$\textrm{m}^3$hr and 1.4 g/$\textrm{m}^3$hr, respectively. The maximum elimination capacity of benzene was 3 times higher than that of ethylene. Carbon dioxide concentration decreased as residence times were lowered due to low ethylene degradation rate. The maximum carbon dioxide production rate of 3,169 [mg-$CO_2$/(g-${C_2}{H_4}$${C_6}{H_6$)] was investigated when benzene and ethylene were completely removed. It was found that dominant bacteria in the benzene-degrading microorganisms were identified as Bacillus mycoides and Pseudomonas fluorescens. Dominant bacteria in the ethylene-degrading microorganisms were identified as Pseudomonas putida and Pseudomonas fluorescens.