• Title/Summary/Keyword: Soil behavior

Search Result 2,056, Processing Time 0.026 seconds

Assessement of Consolidation Characteristics by Field Instrumentation (현장계측사례를 통한 압밀특성 평가)

  • Song, Jeong-Rak;Baek, Seung-Hun;O, Da-Yeong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1992.10a
    • /
    • pp.121-130
    • /
    • 1992
  • Assessement of comsolidation characteristics of soft soil is very important in the project of soft soil improvement. In the design step, the consolidation characteristics of soil is determined by the laboratory tests (typically oedometer test), generally. But there is big differences between the condition of laboratory test and the condition of field(in situ). the differences results in the considerable difference between the predicted and measured consolidation behavior. This article analyzed the consolidation data of the "SOFT SOIL IMPROVEMENT PROJECT of the 2nd Namdong Industrial Complex at Inchon". The project was improving the road way net work in the 2nd Namdong Industrial Complex by preloading and sand pile method. Field instrumentation was performed at 10 points which consist of pneumatic piezometers, magnetic probe extensometers, inclinometers and electronic dipmeter. The results showed that there is big difference in the laboratory predicted consolidation behavior and field consolidadion behavior. Also there was big difference in the settlement behavior and pore pressure behavior. This article investigated the above factors by comparing the settlement, pore pressure and strength at different conditions.onditions.

  • PDF

An Experimental Study of Soil-nailed Structures in Sands (모래를 사용한 지반네일 구조물의 실험적 연구)

  • Kim, Jun-Seok;Lee, Sang-Deok;Lee, Seung-Rae
    • Geotechnical Engineering
    • /
    • v.13 no.2
    • /
    • pp.91-100
    • /
    • 1997
  • The soil nailing method has been developed on the basis of experimental works as well as theoretical backgrounds. As for the experimental research works, most of the data have been measured during the application of load in service. However, not only the soil-nailed structure behavior in service but also the failure behavior of the structure is major concern to evaluate and even establish a design method of soil-nailed walls. In this study, a relatively large-scale experiment was carried out to figure out the failure behavior of soil-nailed wall. A number of data such as displacement of soil-nailed walls, soil pressure in soil-nailed walls, atrial strain and axial force of nail etc.'have been acquired and analysis.

  • PDF

Influence of wall flexibility on dynamic response of cantilever retaining walls

  • Cakir, Tufan
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.1-22
    • /
    • 2014
  • A seismic evaluation is made of the response to horizontal ground shaking of cantilever retaining walls using the finite element model in three dimensional space whose verification is provided analytically through the modal analysis technique in case of the assumptions of fixed base, complete bonding behavior at the wall-soil interface, and elastic behavior of soil. Thanks to the versatility of the finite element model, the retained medium is then idealized as a uniform, elastoplastic stratum of constant thickness and semi-infinite extent in the horizontal direction considering debonding behavior at the interface in order to perform comprehensive soil-structure interaction (SSI) analyses. The parameters varied include the flexibility of the wall, the properties of the soil medium, and the characteristics of the ground motion. Two different finite element models corresponding with flexible and rigid wall configurations are studied for six different soil types under the effects of two different ground motions. The response quantities examined incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that the wall flexibility and soil properties have a major effect on seismic behavior of cantilever retaining walls and should be considered in design criteria of cantilever walls. Furthermore, the results of the numerical investigations are expected to be useful for the better understanding and the optimization of seismic design of this particular type of retaining structure.

A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil

  • Karabork, T.;Deneme, I.O.;Bilgehan, R.P.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.87-103
    • /
    • 2014
  • This study investigated the effect of soil-structure interaction (SSI) on the response of base-isolated buildings. Seismic isolation can significantly reduce the induced seismic loads on a relatively stiff building by introducing flexibility at its base and avoiding resonance with the predominant frequencies of common earthquakes. To provide a better understanding of the movement behavior of multi-story structures during earthquakes, this study analyzed the dynamic behavior of multi-story structures with high damping rubber bearing (HDRB) behavior base isolation systems that were built on soft soil. Various models were developed, both with and without consideration of SSI. Both the superstructure and soil were modeled linearly, but HDRB was modeled non-linearly. The behavior of the specified models under dynamic loads was analyzed using SAP2000 computer software. Erzincan, Marmara and Duzce Earthquakes were chosen as the ground motions. Following the analysis, the displacements, base shear forces, top story accelerations, base level accelerations, periods and maximum internal forces were compared in isolated and fixed-base structures with and without SSI. The results indicate that soil-structure interaction is an important factor (in terms of earthquakes) to consider in the selection of an appropriate isolator for base-isolated structures on soft soils.

Nonlinear Analysis for the Prediction of Lateral Behavior of Single Piles in Non-homogeneous Sandy Soil (비균질 사질토 지반에서 단일말뚝의 수평거동 예측을 위한 비선형 해석기법)

  • 김영수;김병탁;허노영
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.5-16
    • /
    • 2000
  • THe purpose of this paper is to suggest the analytical method which can predict lateral nonlinear behavior in non-homogeneous soil using the coefficient of soil resistance and ultimate soil resistance. Those parameters are obtained through back analysis on the base of the results of a series of model tests.Analytical method of Chang is more or less difficult to predict nonlinear behavior in non-homogeneous sol. So, in this study, for the prediction of nonlinear behavior the compositive analytical method which apply the p - y curve to Chang model is suggested. Also, the program is developed to predict nonlinear behavior using the compositive analytical method and it can be used to calculated the deflection, bending moment and soil reaction with DFM in non-homogeneous soil. To establish applicability of the suggested analytical method, the results of model tests and field tests and Pentagon2D finite element program are compared with those of the compositive analytical method. In the analysis values of the coefficient of soil reaction and ultimate soil resistance are also applied to the case of non-homogeneous soil. Lateral defection calculated using the compositive analytical method has been found to be in good agreement with values measured in field and model load tests.

  • PDF

Soil water characteristic curve and improvement in lime treated expansive soil

  • Al-Mahbashi, Ahmed M.;Elkady, Tamer Y.;Alrefeai, Talal O.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.687-706
    • /
    • 2015
  • Methods commonly used to evaluate the improvement of lime-treated expansive soil include swelling characteristics and unconfined compressive strength. In the field, lime-treated expansive soils are in compacted unsaturated state. Soil water characteristic curves (SWCCs) represent a key parameter to interpret and describe the behavior of unsaturated expansive soil. This paper investigates the use of SWCC as a technique to evaluate improvements acquired by expansive soil after lime treatment. Three different lime contents were considered 2%, 4% and 6% by dry weight of clay. Series of tests were performed to determine the SWCC for the different lime content under curing periods of 7 and 28 day. Correlations between key features of the soil water characteristic curves of lime treated expansive soils and basic engineering behavior such as swelling characteristics and unconfined compression strength were established. Test results revealed that initial slope ($S_1$), saturated water content ($w_{sat}$), and air entry value (AEV) play an important role in reflecting improvement in engineering behavior achieved by lime treatment.

Comparison of Compressive Behavior Characteristics between Unreinforced and Reinforced Lightweight Soils for Recycling of Dredged Soils (준설토 재활용을 위한 무보강 및 보강 경량토의 압축거동특성 비교)

  • Kim, Yun-Tae;Kwon, Yong-Kyu;Kim, Hong-Joo
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.44-49
    • /
    • 2005
  • This paper investigates strength characteristics and stress-strain behaviors of unreinforced and reinforced lightweight soils. Lightweight soil, composed of dredged soil, cement, and air-foam, was reinforced by a waste fishing net, in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions, such as cement content, initial water content, air content, and waste fishing net; then, unconfined compression tests were carried out on these specimens. From the test results, it was shown that reinforced lightweight soil had different behavior after failure, even though it had similar behavior as unreinforced lightweight soil before failure. The test results also showed that stress became constant after peak strength in reinforced lightweight soil, while the stress decreased continuously in unreinforced lightweight soil. It was observed that the strength was increased due to reinforcing effect by the waste fishing net for most cases, except high water content greater than $218\%$. In the case of high water content, a reinforcing effect is negligible, due to slip between waste fishing net and soil particles. In reinforced lightweight soil, secant modulus (E50) was increased, due to the inclusion of waste fishing net.

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement (측방변형지반속 매설관 주변지반의 파괴모드)

  • Hong, Won-Pyo;Han, Jung-Geun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

Determination of structural behavior of Bosporus suspension bridge considering construction stages and different soil conditions

  • Gunaydin, Murat;Adanur, Suleyman;Altunisik, Ahmet Can;Sevim, Baris;Turker, Emel
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.405-429
    • /
    • 2014
  • In this paper, it is aimed to determine the structural behavior of suspension bridges considering construction stages and different soil conditions. Bosporus Suspension Bridge connecting the Europe and Asia in Istanbul is selected as an example. Finite element model of the bridge is constituted using SAP2000 program considering existing drawings. Geometric nonlinearities are taken into consideration in the analysis using P-Delta large displacement criterion. The time dependent material strength of steel and concrete and geometric variations is included in the analysis. Time dependent material properties are considered as compressive strength, aging, shrinkage and creep for concrete, and relaxation for steel. To emphases the soil condition effect on the structural behavior of suspension bridges, each of hard, medium and soft soils are considered in the analysis. The structural behavior of the bridge at different construction stages and different soil conditions has been examined. Two different finite element analyses with and without construction stages are carried out and results are compared with each other. At the end of the analyses, variation of the displacement and internal forces such as bending moment, axial forces and shear forces for bridge deck and towers are given in detail. Also, displacement and stresses for bridge foundation are given with detail. It can be seen from the analyses that there are some differences between both analyses (with and without construction stages) and the results obtained from the construction stages are bigger. It can be stated that the analysis without construction stages cannot give the reliable solutions. In addition, soil condition have effect on the structural behavior of the bridge. So, it is thought that construction stage analysis using time dependent material properties, geometric nonlinearity and soil conditions effects should be considered in order to obtain more realistic structural behavior of suspension bridges.