• 제목/요약/키워드: Soil arching effect

검색결과 55건 처리시간 0.019초

Investigation of slope reinforcement with drilled shafts in colluvium soils

  • Lia, An-Jui;Wang, Wei-Chien;Lin, Horn-Da
    • Geomechanics and Engineering
    • /
    • 제31권1호
    • /
    • pp.71-86
    • /
    • 2022
  • In Taiwan, an efficient approach for enhancing the stability of colluvium slopes is the drilled shaft method. For slopes with drilled shafts, the soil arching effect is one of the primary factors influencing slope stability and intertwines to the failure mechanism of the pile-soil system. In this study, the contribution of soil arching effect to slope stability is evaluated using the FEM software (Plaxis 3D) with the built-in strength reduction technique. The result indicates the depth of the failure surface is influenced by the S/D ratio (the distance to the diameter of piles), which can reflect the contribution of the soil arching effect to soil stability. When α (rock inclination angles)=β (slope angles) is considered and the S/D ratio=4, the failure surface of the slope is not significantly influenced by the piles. Overall, the soil arching effect is more significant on α=β, especially for the steep slopes. Additionally, the soil arching effect has been included in the proposed stability charts. The proposed charts were validated through two case studies, including that of the well-known Woo-Wan-Chai field in Taiwan. The differences in safety factor (FoS) values between the referenced literature and this study was approximately 4.9%.

Earth pressure on a vertical shaft considering the arching effect in c-𝜙 soil

  • Lee, In-Mo;Kim, Do-Hoon;Kim, Kyoung-Yul;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • 제11권6호
    • /
    • pp.879-896
    • /
    • 2016
  • A new earth pressure equation considering the arching effect in $c-{\phi}$ soils was proposed for the accurate calculation of earth pressure on circular vertical shafts. The arching effect and the subsequent load recovery phenomenon occurring due to multi-step excavation were quantitatively investigated through laboratory tests. The new earth pressure equation was verified by comparing the test results with the earth pressures predicted by new equation in various soil conditions. Resulting from testing by using multi-step excavation, the arching effect and load recovery were clearly observed. The test results in $c-{\phi}$ soil showed that even a small amount of cohesion can cause the earth pressure to decrease significantly. Therefore, predicting earth pressure without considering such cohesion can lead to overestimation of earth pressure. The test results in various ground conditions demonstrated that the newly proposed equation, which enables consideration of cohesion as appropriate, is the most reliable equation for predicting earth pressure in both ${\phi}$ soil and $c-{\phi}$ soil. The comparison of the theoretical equations with the field data measured on a real construction site also highlighted the best-fitness of the theoretical equation in predicting earth pressure.

Effects of reinforcement on two-dimensional soil arching development under localized surface loading

  • Geye Li;Chao Xu;Panpan Shen;Jie Han;Xingya Zhang
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.341-358
    • /
    • 2024
  • This paper reports several plane-strain trapdoor tests conducted to investigate the effects of reinforcement on soil arching development under localized surface loading with a loading plate width three times the trapdoor width. An analogical soil composed of aluminum rods with three different diameters was used as the backfill and Kraft paper with two different stiffness values was used as the reinforcement material. Four reinforcement arrangements were investigated: (1) no reinforcement, (2) one low stiffness reinforcement R1, (3) one high stiffness reinforcement R2, and (4) two low stiffness reinforcements R1 with a backfill layer in between. The stiffness of R2 was approximately twice that of R1; therefore, two R1 had approximately the same total stiffness as one R2. Test results indicate that the use of reinforcement minimized soil arching degradation under localized surface loading. Soil arching with reinforcement degraded more at unloading stages as compared to that at loading stages. The use of stiffer reinforcement had the advantages of more effectively minimizing soil arching degradation. As compared to one high stiffness reinforcement layer, two low stiffness reinforcement layers with a backfill layer of certain thickness in between promoted soil arching under localized surface loading. Due to different states of soil arching development with and without reinforcement, an analytical multi-stage soil arching model available in the literature was selected in this study to calculate the average vertical pressures acting on the trapdoor or on the deflected reinforcement section under both the backfill self-weight and localized surface loading.

Experimental and numerical investigation of arching effect in sand using modified Mohr Coulomb

  • Moradi, Golam;Abbasnejad, Alireza
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.829-844
    • /
    • 2015
  • In the current paper the results of a numerical simulation that were verified by a well instrumented experimental procedure for studying the arching effect over a trapdoor in sand is presented. To simulate this phenomenon with continuum mechanics, the experimental procedure is modeled in ABAQUS code using stress dependent hardening in elastic state and plastic strain dependent frictional hardening-softening with Mohr Coulomb failure criterion applying user sub-routine. The apparatus comprises rectangular trapdoors with different width that can yield downward while stresses and deformations are recorded simultaneously. As the trapdoor starts to yield, the whole soil mass deforms elastically. However, after an immediate specified displacement, depending on the width of the trapdoor, the soil mass behaves plastically. This behavior of sand occurs due to the flow phenomenon and continues until the stress on trapdoor is minimized. Then the failure process develops in sand and the measured stress on the trapdoor shows an ascending trend. This indicates gradual separation of the yielding mass from the whole soil body. Finally, the flow process leads to establish a stable vault of sand called arching mechanism or progressive collapse of the soil body.

Vertical load on a conduit buried under a sloping ground

  • Khan, Muhammad U.A.;Shukla, Sanjay K.
    • Geomechanics and Engineering
    • /
    • 제24권6호
    • /
    • pp.599-610
    • /
    • 2021
  • Conduits are commonly installed below the ground for utility conveyance around the world. Vertical load on a buried conduit is an important parameter that needs to be known to ensure its safe design and installation. Consideration of soil arching in load calculations helps achieve a more realistic and efficient design. In the past, considering the arching effect, the design charts have been presented for use by practicing engineers to calculate the vertical load on the conduit buried below the level ground. There are currently no design charts for calculating the vertical load on the conduit buried under a sloping ground. In this paper, an attempt has been made to present the derivation of a generalized analytical expression considering that the soil mass overlying the conduit has a sloping face and the arching phenomenon takes place. The developed generalized expression has been used to present some design charts considering specific values of slope geometry, soil properties and burial depths. Furthermore, analytical results for specific soil parameters have been compared with the results extracted from a commercial software PLAXIS 2D, for a developed numerical model and an independent study.

아칭효과가 평행이동하는 강성옹벽의 안정성에 미치는 영향 (Arching Effects on Stability of Translating Rigid Retaining Walls)

  • 백규호
    • 한국지반공학회논문집
    • /
    • 제20권6호
    • /
    • pp.127-136
    • /
    • 2004
  • 강성옹벽에 작용하는 주동토압의 크기와 분포형태에 영향을 미치는 아칭효과는 옹벽의 안정성과 옹벽 단면의 결정에도 영향을 미치게 된다. 따라서 본 연구에서는 평행이동하는 강성옹벽의 경우에 뒷채움재에서 발생하는 아칭효과가 옹벽에 작용하는 토압과 전도모멘트, 옹벽의 안정성, 그리고 옹벽의 단면에 미치는 영향을 규명하기 위하여 아칭효과를 고려해서 토압을 산정하는 백(2003a)의 제안식과 Coulomb의 토압이론으로부터 얻어진 결과들을 서로 비교하였다. 연구결과 $\phi$$\delta$의 크기에 관계없이 아칭효과를 고려했을 때의 주동토압이 Coulomb 토압보다 컸으며, 옹벽에 작용하는 전도모멘트도 아칭효과를 고려했을 때가 고려하지 않았을 때보다 큰 것으로 나타났다. 그리고 토압에 의해 옹벽의 각 위치에 유발되는 전단력과 모멘트을 비교한 결과 아칭효과를 고려했을 때의 전단력과 모멘트가 아칭효과를 고려하지 않았을 때보다 컸으며, 아칭효과의 고려 유무에 따라 옹벽에 유발되는 전단력의 차이와 모멘트의 차이는 옹벽의 저면으로부터 옹벽 높이의 0.02-0.08배되는 위치에서 최대가 되었다. 따라서 Coulomb의 토압이론에 근거해서 평행이동하는 강성옹벽을 설계하면 뒷채움재에서 발생하는 아칭효과로 인해 옹벽이 활동과 전도파괴에 대하여 불안정할 수 있다. 그리고 옹벽의 단면은 옹벽에 작용하는 전단력과 모멘트를 지지하기에 충분하지 않을 수 있으며, 이러한 옹벽 단면의 부족은 옹벽의 상부보다는 하부에서 심각하게 된다.

말뚝과 토목섬유로 지지된 성토지반의 아칭효과 (Soil Arching in Embarikments Suppoyed by Piles with Geosynthethics)

  • 홍원표;이재호
    • 한국지반공학회논문집
    • /
    • 제23권6호
    • /
    • pp.53-66
    • /
    • 2007
  • 말뚝과 토목섬유로 지지된 성토지반의 아칭효과를 규명하기 위하여 일련의 모형실험을 실시하였다. 모형실험에서는 단독캡 말뚝을 상하이동이 가능한 철판 사이에 일정간격으로 설치하고, 토목섬유를 포설한 후 성토를 실시하였다. 모형실험에서는 침하판을 하강시킴으로써 연약지반의 침하를 모사하였으며, 침하판이 하강함에 따라 성토지반에 지반아칭이 발휘되었다. 성토지반과 토목섬유의 변형거동은 카메라로 관찰하였다. 또한 계측시스템을 통하여 말뚝캡에 작용하는 하중과 토목섬유의 인장변형률을 측정하였다. 모형실험결과 연약지반부의 침하가 발생할 때, 지반아칭효과로 인하여 말뚝으로 전이되는 성토하중이 급격히 증가하는 것으로 나타났다. 이때 토목섬유가 설치되지 않은 경우는 말뚝에 작용하는 하중이 최대값에 도달한 후 감소하는 반면, 토목섬유로 복합지지된 경우는 침하에 따라 말뚝하중이 점진적으로 증가하면서 일정한 값으로 수렴한다. 이것은 토목섬유에 의한 보강이 성토지반의 변형 억제에 효과적임을 나타내는 것이다. 한편, 침하유발시 말뚝캡 사이의 토목섬유는 원호형태로 변형을 일으키는 것으로 나타났다. 말뚝과 토목섬유로 지지된 성토지반에서 말뚝캡으로 전이되는 성토하중은 지반아칭효과와 토목섬유의 인장변형률을 고려함으로써 모형화할 수 있다.

성토지지말뚝의 연직하중 분담효과에 관한 연구 (A Study on the Effect of Carrying Vertical Loads Over Embankment Piles)

  • 홍원표;이광우
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.285-294
    • /
    • 2002
  • 연약지반상에 제방 성토시 예상되는 연약지반의 측방유동을 적극 억지할 수 있는 성토지지말뚝공법은 말뚝두부에 캡을 설치하는 형태에 따라 크게 말뚝슬래브공법, 캡보말뚝공법 및 단독캡말뚝공법으로 구분할 수 있다. 이들 공법중 캡보말뚝공법 및 단독캡말뚝공법에서는 성토지지말뚝과 지반간의 상대적인 강성차이로 인해 성토지반 속에 지반아치가 발생하게 되고, 대부분의 성토하중은 발달된 지반아치를 통해 말뚝으로 전달된다. 두 공법에서 발생되는 지반아치의 차이는 그 형태가 캡보말뚝공법의 경우 터널의 형태와 유사하게 2차원적이고, 단독캡말뚝공법에서는 돔의 형태와 유사하게 3차원적이라는 것이다. 따라서 이 두 경우의 지반아치로 인한 성토지지말뚝의 하중분담효과에 관한 이론식을 각각 유도 제안하여 비교하였으며, 두 이론식의 타당성을 입증하기 위한 일련의 모형실험을 수행하였다.

A model to analyze a buried structure response to surface dynamic loading

  • Dancygier, A.N.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • 제9권1호
    • /
    • pp.69-88
    • /
    • 2000
  • A relatively simple model of a buried structure response to a surface loading that can simulate a possible opening and closure of a gap between the soil and the structure is presented. Analysis of the response of small and medium scale buried roof slabs under surface impulsive loading shows that the model's predictions are in fairly good agreement with the experimental results. Application of the model to a study case shows the relative influence of system parameters such as, the depth of burial, the arching coefficient, and the roof thickness, on the interface pressure and on the roof displacement. This model demonstrates the effect of a gap between the structure and the soil. The relative importance of including a gap opening and closure in the analysis is examined by the application of the model to a study case. This study results show that the deeper the depth of burial, the longer the gap duration, and the shorter the duration of the initial interface impact, while the higher the soil's shear resistance, the higher the gap duration, and the shorter the initial interface impact duration.

A new approach on soil-structure interaction.

  • Gilbert, C.
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.101-110
    • /
    • 2002
  • This article summarises the traditional method of soil-structure interaction based on the modulus of subgrade reaction and shows its weakness. In order to avoid these weakness, a new soil-structure interaction model is proposed. This model considers the soil as a set of connected springs which enables interaction between springs. Its use is as simple as the traditional model but allows to define the soil properties independently from the structural properties and the loading conditions. Thus, the definition of the modulus of subgrade reaction is unnecessary as each component is defined by its own modulii (Young's modulus and shear modulus). The non-linear soil behaviour for the shear stress versus distortion is also incorporated in the model. This feature allows to pinpoint the arching effect in the ground and shows how the stresses concentrate on stiff materials. Based on these principles, three dimensional program has been developed in order to solve the difficult problem of soil improvement by inclusions (stiff or soft). Also the possibility to take into account a flexible mat and/or a subgrade layer has been implemented. Equations used in the model are developed and a parametric study of the necessary data used in the program is presented. In particular, the Westergaard modulus notion and the arching effect are analysed.

  • PDF