• Title/Summary/Keyword: Soil ameliorator

Search Result 7, Processing Time 0.017 seconds

Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils

  • Lee, Eun-Hwa;Eo, Ju-Kyeong;Lee, Chang-Seok;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.40 no.3
    • /
    • pp.168-172
    • /
    • 2012
  • In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on the roots of P. densiflora. The results suggest that soil ameliorators can have a positive effect on ECM fungi in terms of growth of host plants and show the potential use of soil ameliorator treatment for revegetation with ECM-colonized pine seedlings in the coal mine spoils.

Content of Heavy Metals in Coal Fly Ash from the Samcheonpo and the Seocheon Power Plant (삼천포와 서천 화력발전소에서 발생하는 석탄회중의 중금속 함량에 관한 연구)

  • Yoon, Chung-Han;Oh, Keun-Chang;Kim, Yong-Woong;Shin, Bang-Sup
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.147-154
    • /
    • 1995
  • Coal fly ashes collected from the Samcheonpo and the Seocheon Power Plants were analyzed for major and minor components and heavy metals such as As, Cd, Co, Cr, Cu, Ga, Hg, Mo, Ni, Pb, Sb, V and Zn in order to suggest basic data to apply coal fly ash as fertilizer or soil ameliorator. The specific gravity of the samples was less than 2.0, and amounts of organic matter range from 5.0% to 12.3%. The identified minerals by XRD were mainly quartz, mullite and pyrite in anthracite coal, and mainly quartz and mullite in bituminous coal. Generally, the contents of heavy metal elements analyzed were lower less than those of soil, though higher in some samples. Element couples of some elements( e.g., As-Mo, Zn ; Mo-As, Sb, V, Zn ; Sb-Zn ) show positive correlations with each other, but the high correlations of toxic elements such as As, Pb, Cd and Hg indicate to give attention to apply coal fly ash as fertilizer or soil ameliorator.

  • PDF

Influences of Application Methods of NPK Fertilizer and Ameliorator on Job′s Tears(Coix Lacryma-Jobi L.) Yield and Soil Properties at Newly-reclaimed Land (신개간지에서 삼요소와 토양개량제 시용방법이 율무수량과 토양특성에 미치는 영향)

  • 허봉구;한영희;김주현
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.2
    • /
    • pp.175-179
    • /
    • 1994
  • This experiment was carried out to investigate the effect of improved NPK fertilizer and ameliorator application methods on job's tears yield and soil properties in the newly-reclaimed land from 1985 through 1988. Job's tears height of integrated improvement plot was higher than the other plots, and increased from the 1st and the 2nd year, but decreased from the 3rd year when soil conditioner was not applied. Average yield of the crop in the integrated improvement plot was 2.16 t /ha being increased by 49% more than the control plot, and the yield was the greatest in order of integrated improvement>subsoiling>phosphate>lime>compost>control plot. Soil bulk density and hardness of the topsoil decreased to the 3rd year, but increased in the 4th year. Soil pH of the topsoil was not changed significantly by different soil depths and cultivated years.

  • PDF

Effects of Decreasing Methods of Salt Content in Root Zone on Soil Properties and Crop Grwoth at the Newly Reclaimed Tidal Soil (신간척지(新干拓地)에서 근권(根圈)의 염농도(鹽濃度) 저하(低下) 방법(方法)이 토양특성(土壤特性)과 작물생육(作物生育)에 미치는 영향(影響))

  • Cho, Yeong-Kil;Jo, In-Sang;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 1992
  • This experiment was conducted to find out the useful data for upland crop cultivation in the newly reclaimed tidal land. Poseung silty clay loam soil was selected, and cotton(Mogpo VII) and tall fescue were cultivated under different drainage systems and soil ameliorator applications. Soil hardness and bulk density were decreased by subsurface drainage and plastic film installed at 40cm depth of the soil. Red earth application was also effective to loosen the soil, but zeolite and gypsum made the subsoil compact. Water content of the soil was high in surface drain than that of subsurface drain or plastic film curtain plot during dry season. The water content was in order of plastic film curtain, surface drain and subsurface drain. Electrical conductivity(EC) was decreased to lower than 0.4 Simens $meter^{-1}$ ($SM^{-1}$) in the subsurface drain during rainy season, and the EC of subsurface drain was maintained a quater to an half of surface drain. The yield of cotton and tall fescue were high in order of subsurface drain, plastic film curtain and surface drain plot. The yields of cotton were increased to 36-73 % by ameliorator application, and the red earth application was more effective for tall fescue growth compare to gypsum and zeolite.

  • PDF

Effects of Gypsum and Fresh Cattle Manure on Physico-chemical Properties of Soil and Yield of Forage Crop in Hwaong Reclaimed Land

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Shim, Jae-Man;Kim, Hee-Dong;Kim, Sun-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.31-39
    • /
    • 2017
  • The effects of application of gypsum and fresh cattle manure on the yield of forage crop were investigated in Hwaong reclaimed land in Korea for 3 years from 2011 to 2013. This study was conducted to develop the practical application method of livestock manure as a fertilization source and a soil physico-chemical ameliorator for the cultivation of forage crop $Sorghum{\times}Sudangrass$ hybrid in newly reclaimed tidal land soil. Treatments with six applications were established with three replications; chemical fertilizer (CF), gypsum (G) $20Mg\;ha^{-1}$, G+fresh cattle manure (FCM) 100%, G+FCM 200%, G+FCM 300% and FCM 100% which referred to the application rate equivalent to the recommended amount of phosphate fertilization by soil test. The combined treatments of G+FCM increased soil organic matter, $Av.P_2O_5$ and exchangeable $Ca^{2+}$ contents while decreased exchangeable $Na^+$ and $Mg^{2+}$. The soil bulk density, soil hardness and soil aggregate formation were improved by G+FCM treatments. The dry matter yields of $Sorghum{\times}Sudangrass$ hybrid were significantly increased in proportion to the application rate of FCM. The phosphorus use efficiency showed the highest in the application level of G+FCM 100%, which seemed to be the results of reduced nutrient use efficiency by nutrient immobilization, leaching etc. when applied excessive amount of fresh animal manure.

Effect of soil-ameliorator mixtures on nutrient leaching in sandy paddy soil (사질답토양(砂質畓土壤)에 수종(數種) 개량제(改良劑) 시용(施用)이 양분용탈(養分溶脫)에 미치는 영향(影響))

  • Ahn, Sang-Bae;Park, Jun-Kyu;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 1987
  • Experimental informations on the possible alternative resources of soil addition in sandy paddy soils were obtained by applying fertilizer N, P, and K to the top of 26 cm long columns containing the soil-ameliorator mixture and by determining the concentration and leaching loss of nutrients in percolated water and permeability. 1. Addition of red earth and compost to soils decreased pronouncedly the permeability. Relative magnitude of permeability was compost+slag+red earth > compost+red earth > compost > red earth > compost+slag > slag > non-added soil. 2. Concentration and leaching loss of $NH_4-N$ and $SiO_2$ were high by addition of compost-slag or red earth mixture to soils. The present of these nutrients in soils after experiment was, also, higher than that in non-added soil and in red earth to soils. 3. Those of K, Ca, and Mg were similar to $NH_4-N$ and $SiO_2$. Especially, leaching loss and present of K in soils by addition of compost to soils were higher dramatically than those of non-added soil and of red earth to soils. 4. Those of $Fe^{{+}{+}}$ in non-added soil were much higher than those by addition of compost and slag to soils. These values were the highest in 12 days after submergence, while these of $Mn^{{+}{+}}$ the lowest. 5. Concentration of $NH_4-N$ was high by addition of compost to soils, while the present of it in soils after experiment was tended to be contrary.

  • PDF

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.