• Title/Summary/Keyword: Soil Uncertainty

Search Result 262, Processing Time 0.023 seconds

Detection of Irrigation Timing and the Mapping of Paddy Cover in Korea Using MODIS Images Data (MODIS 영상자료를 이용한 관개시기 탐지와 논 피복지도 제작)

  • Jeong, Seung-Taek;Jang, Keun-Chang;Hong, Seok-Yeong;Kang, Sin-Kyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.2
    • /
    • pp.69-78
    • /
    • 2011
  • Rice is one of the world's staple foods. Paddy rice fields have unique biophysical characteristics that the rice is grown on flooded soils unlike other crops. Information on the spatial distribution of paddy fields and the timing of irrigation are of importance to determine hydrological balance and efficiency of water resource management. In this paper, we detected the timing of irrigation and spatial distribution of paddy fields using the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the NASA EOS Aqua satellite. The timing of irrigation was detected by the combined use of MODIS-based vegetation index and Land Surface Water Index (LSWI). The detected timing of irrigation showed good agreement with field observations from two flux sites in Korea and Japan. Based on the irrigation detection, a land cover map of paddy fields was generated with subsidiary information on seasonal patterns of MODIS enhanced vegetation index (EVI). When the MODISbased paddy field map was compared with a land cover map from the Ministry of Environment, Korea, it overestimated the regions with large paddies but underestimated those with small and fragmented paddies. Potential reasons for such spatial discrepancies may be attributed to coarse pixel resolution (500 m) of MODIS images, uncertainty in parameterization of threshold values for discarding forest and water pixels, and the application of LSWI threshold value developed for paddy fields in China. Nevertheless, this study showed that an improved utilization of seasonal patterns of MODIS vegetation and water-related indices could be applied in water resource management and enhanced estimation of evapotranspiration from paddy fields.

On Using Near-surface Remote Sensing Observation for Evaluation Gross Primary Productivity and Net Ecosystem CO2 Partitioning (근거리 원격탐사 기법을 이용한 총일차생산량 추정 및 순생태계 CO2 교환량 배분의 정확도 평가에 관하여)

  • Park, Juhan;Kang, Minseok;Cho, Sungsik;Sohn, Seungwon;Kim, Jongho;Kim, Su-Jin;Lim, Jong-Hwan;Kang, Mingu;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.251-267
    • /
    • 2021
  • Remotely sensed vegetation indices (VIs) are empirically related with gross primary productivity (GPP) in various spatio-temporal scales. The uncertainties in GPP-VI relationship increase with temporal resolution. Uncertainty also exists in the eddy covariance (EC)-based estimation of GPP, arising from the partitioning of the measured net ecosystem CO2 exchange (NEE) into GPP and ecosystem respiration (RE). For two forests and two agricultural sites, we correlated the EC-derived GPP in various time scales with three different near-surface remotely sensed VIs: (1) normalized difference vegetation index (NDVI), (2) enhanced vegetation index (EVI), and (3) near infrared reflectance from vegetation (NIRv) along with NIRvP (i.e., NIRv multiplied by photosynthetically active radiation, PAR). Among the compared VIs, NIRvP showed highest correlation with half-hourly and monthly GPP at all sites. The NIRvP was used to test the reliability of GPP derived by two different NEE partitioning methods: (1) original KoFlux methods (GPPOri) and (2) machine-learning based method (GPPANN). GPPANN showed higher correlation with NIRvP at half-hourly time scale, but there was no difference at daily time scale. The NIRvP-GPP correlation was lower under clear sky conditions due to co-limitation of GPP by other environmental conditions such as air temperature, vapor pressure deficit and soil moisture. However, under cloudy conditions when photosynthesis is mainly limited by radiation, the use of NIRvP was more promising to test the credibility of NEE partitioning methods. Despite the necessity of further analyses, the results suggest that NIRvP can be used as the proxy of GPP at high temporal-scale. However, for the VIs-based GPP estimation with high temporal resolution to be meaningful, complex systems-based analysis methods (related to systems thinking and self-organization that goes beyond the empirical VIs-GPP relationship) should be developed.