• Title/Summary/Keyword: Soil Uncertainty

Search Result 262, Processing Time 0.032 seconds

Integrity Assessment of Asphalt Concrete Pavement System Considering Uncertainties in Material Properties (재료 물성치의 불확실성을 고려한 포장구조체의 건전성 평가)

  • Yi, Jin-Hak;Kim, Jae-Min;Kim, Young-Sang;Moon, Sung-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.49-54
    • /
    • 2007
  • Structural integrity assessment technique for pavement system is studied considering the uncertainties among the material properties. The artificial neural networks technique is applied for the inverse analysis to estimate the elastic modulus based on the measured deflections from the FWD test. A computer code based on the spectral element method was developed for the accurate and fast analysis of the multi-layered soil structures, and the developed program was used for generating the training and testing patterns for the neural network. Neural networks was applied to estimate the elastic modulus of pavement system using the maximum deflections with and without the uncertainties in the material properties. It was found that the estimation results by the conventiona1 neural networks were very poor when there exist the uncertainties and the estimation results could be significantly improved by adopting the proposed method for generating training patterns considering the uncertainties among material properties.

  • PDF

Slope Stability Analysis Considering Multi Failure Mode (다중파괴모드를 고려한 사면안정해석)

  • Kim, Hyun-Ki;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 2011
  • Conventional slope stability analysis is focused on calculating minimum factor of safety or maximum probability of failure. To minimize inherent uncertainty of soil properties and analytical model and to reflect various analytical models and its failure shape in slope stability analysis, slope stability analysis method considering simultaneous failure probability for multi failure mode was proposed. Linear programming recently introduced in system reliability analysis was used for calculation of simultaneous failure probability. System reliability analysis for various analytical models could be executed by this method. For application analysis for embankment, the results of this method shows that system stability of embankment calculate quantitatively.

A Study of Optimizing Cathodic Protection in Comparison of Design Methodologies

  • Choi, Young-Kwan;Choi, Sang-Yule;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.11
    • /
    • pp.23-29
    • /
    • 2010
  • The principal factor determining an optimum design method for cathodic protection is finding the protection current for preventing the corrosion of existing, already laid pipe. Some factors currently used to test designs include the sizes and lengths of pipes, soil resistivity, and the coating damage rate. We believe this method and current formulae are not optimum due to the uncertainty of determining the coating damage rate and the corrosion protection current's density. This paper analyzes the amount of protection current obtained by performing a temporary current test using data describing existing laid pipe. We then propose determining the corrosion protection current by using the temporary current test after modifying the formula. In addition, we suggest a way to choose optimized cathodic protection and the process of design by executing the design and taking account of such factors as a site condition of 34km-long non-protected water supply pipe lines (stages I and II) in ${\bigcirc}{\bigcirc}$ region, climate, interferences, and durability.

Estimating Vulnerable Duration for Irrigation with Agricultural Water Supply and Demand during Residual Periods (농업용수의 잔여 공급계획량 및 수요예측량에 의한 관개 취약시기 산정)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.123-128
    • /
    • 2012
  • For optimal reservoir operation and management, there are essential elements including water supply in agricultural reservoir and demand in irrigation district. To estimate agricultural water demand and supply, many factors such as weather, crops, soil, growing conditions cultivation method and the watershed/irrigation area should be considered, however, there are occurred water supply impossible duration under the influence of the variability and uncertainty of meteorological and hydrological phenomenon. Focusing on agricultural reservoir, amount and tendency of agricultural water supply and demand shows seasonally/regionally different patterns. Through the analysis of deviation and changes in the timing of the two elements, duration in excess of water supply can be identified quantitatively. Here, we introduce an approach to assessment of irrigation vulnerable duration for effective management of agricultural reservoir using time dependent change analysis of residual water supply and irrigation water requirements. Irrigation vulnerable duration has been determined through the comparison of water supply in agricultural reservoir and demand in irrigation district based on the water budget analysis, therefore can be used as an improved and basis data for the effective and intensive water management.

Uncertainty Analysis of various soil moisture measurement in mountains. (산지 토양수분량의 불확실성 분석)

  • Kim, Kiyoung;Lee, Yeongil;Jung, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.316-316
    • /
    • 2019
  • 최근 빈번한 자연재해로 인해 기상 및 지구물리학적 요소들을 관측하는 연구들이 활발히 진행되고 있으며, 그중 지표와 기상을 연결해주는 토양수분 관측은 지구에서 일어나는 현상에 대한 이해도를 높이기 위한 중요한 요소로써 인식되고 있다. 이러한 토양수분 자료는 지난 몇 년 동안 다양한 측정 방법과 알고리즘 개발이 이루어져왔으나 이러한 방식으로 산출된 데이터를 무분별하게 이용하기에 앞서 최적의 사용을 위해 오류 구조를 파악하고 정량적으로 측정하는 분석이 필요하다. 따라서 Triple collocation(TC) 기법을 활용하여 가상의 실제값(hypothetical truth)을 가정하고 각각의 산출데이터의 측정 불확도와 상관성을 추정할 수 있다. 본 연구에서는 인공위성, 모델자료와 같은 측정 방법뿐만 아니라 지점에 설치하여 물리적인 방법을 통한 토양수분 산출방식에도 관측상의 오차가 존재함을 인지하고, 이러한 오차가 존재하는 다양한 데이터들을 분석하였다. 이용된 데이터는 설마천 산지 사면에 설치된 유전율식(TDR, Time Domain Reflectometer) 측정장비, Cosmic-Ray newtron Probe, Noah 지표모델을 활용한 자료 동화 자료인 Global Land Data Assimilation System (GLDAS)를 입력 자료로 하여 TC 기법에 적용하였다. 분석 결과는 유역의 토양수분 관측에 대한 다양한 방법의 불확실성을 규명하는데 가장 중요한 연구로써 활용될 것으로 기대 된다.

  • PDF

Effects of Geography, Weather Variability, and Climate Change on Potato Model Uncertainty

  • Fleisher, D.H.;Condori, B.;Quiroz, R.;Alva, A.;Asseng, S.;Barreda, C.;Bindi, M.;Boote, K.J.;Ferrise, R.;Franke, A.C.;Govindakrishnan, P.M.;Harahagazwe, D.;Hoogenboom, G.;Naresh Kumar, S.;Merante, P.;Nendel, C.;Olesen, J.E.;Parker, P.S.;Raes, D.;Raymundo, R.;Ruane, A.C.;Stockle, C.;Supit, I.;Vanuytrecht, E.;Wolf, J.;Woli, P.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2016.09a
    • /
    • pp.41-43
    • /
    • 2016
  • PDF

Stepped Isothermal Methods Using Time-Temperature Superposition Principles for Lifetime Prediction of Polyester Geogrids

  • Koo Hyun-Jin;Kim You-Kyum;Kim Dong-Whan
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.69-73
    • /
    • 2005
  • The failure of geogrids used for soil reinforcement application can be defined as an excessive creep strain which causes the collapse of slopes and embankments. Accordingly, the lifetime is evaluated as a time to reach the excessive creep strain using two accelerated creep testing methods, time-temperature superposition(TTS) and stepped isothermal methods(SIM). TTS is a well-accepted acceleration method to evaluate creep behavior of polymeric materials, while SIM was developed in the last ten years mainly to shorten testing time and minimize the uncertainty associated with inherent variability of multi-specimen tests. The SIM test is usually performed using single rib of geogrids for temperature steps of $14^{\circ}C$ and a dwell time of 10,000 seconds. However, for multi-ribs of geogrids, the applicability of the SIM has not been well established. In this study, the creep behaviors are evaluated using multi-ribs of polyester geogrids using SIM and TTS creep procedures and the newly designed test equipment. Then the lifetime of geogrids are predicted by analyzing the failure times to reach the excessive creep strains through reliability analysis.

  • PDF

Reliability Analysis of Seismically Induced Slope Deformations (신뢰성 기법을 이용한 지진으로 인한 사면 변위해석)

  • Kim, Jin-Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.3
    • /
    • pp.111-121
    • /
    • 2007
  • The paper presents a reliability-based method that can capture the impact of uncertainty of seismic loadings. The proposed method incorporates probabilistic concepts into the classical limit equilibrium and the Newmark-type deformation techniques. The risk of damage is then computed by Monte Carlo simulation. Random process and RMS hazard method are introduced to produce seismic motions and also to use them in the seismic slope analyses. The geotechnical variability and sampling errors are also considered. The results of reliability analyses indicate that in a highly seismically active region, characterization of earthquake hazard is the more critical factor, and characterization of soil properties has a relatively small effect on the computed risk of slope failure and excessive slope deformations. The results can be applicable to both circular and non-circular slip surface failure modes.

Considerations on Screening for the Input Data of the Biosphere Model in the Radioactive Waste Disposal Facility (방사성폐기물 처분시설에서 생태계 모델의 입력데이터 선정에 대한 고찰)

  • Mi-Seon Jeong;Dong-Kuk Park;Soo-Gin Kim;Kang-Il Jung
    • Journal of Radiation Industry
    • /
    • v.17 no.2
    • /
    • pp.209-217
    • /
    • 2023
  • The biosphere has important function in the safety assessment of a radioactive waste disposal facility. A biosphere model in the safety assessment needs various input data that contain significantly inherent uncertainties. This paper reviews the effects of the input data on the radiological impact assessment from main radionuclides such as 14C and 99Tc in the biosphere model. In addition, it is confirmed that the safety criteria is met, when the conservative input data for the intake rate, soil to plant concentration ratio, and distribution coefficients of the radionuclides are applied and probabilistic analysis are conducted in the biosphere model. Nevertheless, it is required to generate site-specific input data for the confidence building and reduce excessive conservatism in the biosphere model.

Fragility Analyses on Seismic Isolated LRB Concrete Bridges (LRB 면진 콘크리트 교량의 손상도 해석)

  • Kim, Jong-In;Kim, Doo-Kie;Kim, Tae-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.135-144
    • /
    • 2006
  • In performing a risk analysis of structures under earthquakes, it is imperative to identify the vulnerability of structures associated with various damage stages considering structural properties, soil-structure interactions, site condition, and so on. In this paper, the method to derive a representative fragility curve of seismic isolated LRB(lead rubber bearing) bridges is proposed. In which, the curve is assumed log-normally distribution with two parameters. The risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is also performed to assure the earthquake resisting capability of the structures. An practical way for constructing the representative fragility curves is also recommended combining fragility curves of structures.