• Title/Summary/Keyword: Soil Sensing

Search Result 427, Processing Time 0.036 seconds

Study on Plastics Detection Technique using Terra/ASTER Data

  • Syoji, Mizuhiko;Ohkawa, Kazumichi
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1460-1463
    • /
    • 2003
  • In this study, plastic detection technique was developed, applying remote sensing technology as a method to extract plastic wastes, which is one of the big causes of concern contributing to environmental destruction. It is possible to extract areas where plastic (including polypropylene and polyethylene) wastes are prominent, using ASTER data by taking advantage of its absorptive characteristics of ASTER/SWIR bands. The algorithm is applicable to define large industrial wastes disposal sites and areas where plastic greenhouses are concentrated. However, the detection technique with ASTER/SWIR data has some research tasks to be tackled, which includes a partial secretion of reference spectral, depending on some conditions of plastic wastes and a detection error in a region mixed with vegetations and waters. Following results were obtained after making comparisons between several detection methods and plastic wastes in different conditions; (a)'spectral extraction method' was suitable for areas where plastic wastes exist separated from other objects, such as coastal areas where plastic wastes drifted ashore. (single plastic spectral was used as a reference for the 'spectral extraction method') (b)On the other hand, the 'spectral extraction method' was not suitable for sites where plastic wastes are mixed with vegetation and soil. After making comparison of the processing results of a mixed area, it was found that applying both 'separation method' using un-mixing and ‘spectral extraction method’ with NDVI masked is the most appropriate method to extract plastic wastes. Also, we have investigated the possibility of reducing the influence of vegetation and water, using ASTER/TIR, and successfully extracted some places with plastics. As a conclusion, we have summarized the relationship between detection techniques and conditions of plastic wastes and propose the practical application of remote sensing technology to the extraction of plastic wastes.

  • PDF

Research of Topography Changes by Artificial Structures and Scattering Mechanism in Yoobu-Do Inter-tidal Flat Using Remote Sensing Data (원격탐사자료를 이용한 인공구조물 건설에 의한 군산 유부도 조간대의 지형변화 및 표면특성에 관한 연구)

  • Xu, Zhen;Kim, Duk-Jin;Kim, Seung Hee
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.57-68
    • /
    • 2013
  • Large-scale coastal construction projects, such as land reclamation and dykes, were constructed from the late twentieth century in Yoobu-Do region. Land reclamation combined with the dynamics of tidal currents may have accelerated local sedimentation and erosion resulting in rapid reformation of coastal topography. This study presents the results of the topography changes around Yoobu-Do by large-scale coastal constructions using time-series waterline extraction technique of Landsat TM/ETM+ data acquired from 1998 to 2012. Furthermore, the Freeman-Durden decomposition was applied to fully polarimetric RADARSAT-2 SAR data in order to analyze the scattering mechanisms of the deposited surface. According to the case study, the deposition areas were over 4.5 $km^2$ and distributed in the east, northeast, and west of Yoobu-Do. In the eastern deposition area, it was found that the scattering mechanism was difference from other deposition areas possibly indicating that different types of soil were deposited.

Feasibility Study for an Optical Sensing System for Hardy Kiwi (Actinidia arguta) Sugar Content Estimation

  • Lee, Sangyoon;Sarkar, Shagor;Park, Youngki;Yang, Jaekyeong;Kweon, Giyoung
    • Journal of agriculture & life science
    • /
    • v.53 no.3
    • /
    • pp.147-157
    • /
    • 2019
  • In this study, we tried to find out the most appropriate pre-processing method and to verify the feasibility of developing a low-price sensing system for predicting the hardy kiwis sugar content based on VNIRS and subsequent spectral analysis. A total of 495 hardy kiwi samples were collected from three farms in Muju, Jeollabukdo, South Korea. The samples were scanned with a spectrophotometer in the range of 730-2300 nm with 1 nm spectral sampling interval. The measured data were arbitrarily separated into calibration and validation data for sugar content prediction. Partial least squares (PLS) regression was performed using various combinations of pre-processing methods. When the latent variable (LV) was 8 with the pre-processing combination of standard normal variate (SNV) and orthogonal signal correction (OSC), the highest R2 values of calibration and validation were 0.78 and 0.84, respectively. The possibility of predicting the sugar content of hardy kiwi was also examined at spectral sampling intervals of 6 and 10 nm in the narrower spectral range from 730 nm to 1200 nm for a low-price optical sensing system. The prediction performance had promising results with R2 values of 0.84 and 0.80 for 6 and 10 nm, respectively. Future studies will aim to develop a low-price optical sensing system with a combination of optical components such as photodiodes, light-emitting diodes (LEDs) and/or lamps, and to locate a more reliable prediction model by including meteorological data, soil data, and different varieties of hardy kiwi plants.

Study on the Possibility of Estimating Surface Soil Moisture Using Sentinel-1 SAR Satellite Imagery Based on Google Earth Engine (Google Earth Engine 기반 Sentinel-1 SAR 위성영상을 이용한 지표 토양수분량 산정 가능성에 관한 연구)

  • Younghyun Cho
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.229-241
    • /
    • 2024
  • With the advancement of big data processing technology using cloud platforms, access, processing, and analysis of large-volume data such as satellite imagery have recently been significantly improved. In this study, the Change Detection Method, a relatively simple technique for retrieving soil moisture, was applied to the backscattering coefficient values of pre-processed Sentinel-1 synthetic aperture radar (SAR) satellite imagery product based on Google Earth Engine (GEE), one of those platforms, to estimate the surface soil moisture for six observatories within the Yongdam Dam watershed in South Korea for the period of 2015 to 2023, as well as the watershed average. Subsequently, a correlation analysis was conducted between the estimated values and actual measurements, along with an examination of the applicability of GEE. The results revealed that the surface soil moisture estimated for small areas within the soil moisture observatories of the watershed exhibited low correlations ranging from 0.1 to 0.3 for both VH and VV polarizations, likely due to the inherent measurement accuracy of the SAR satellite imagery and variations in data characteristics. However, the surface soil moisture average, which was derived by extracting the average SAR backscattering coefficient values for the entire watershed area and applying moving averages to mitigate data uncertainties and variability, exhibited significantly improved results at the level of 0.5. The results obtained from estimating soil moisture using GEE demonstrate its utility despite limitations in directly conducting desired analyses due to preprocessed SAR data. However, the efficient processing of extensive satellite imagery data allows for the estimation and evaluation of soil moisture over broad ranges, such as long-term watershed averages. This highlights the effectiveness of GEE in handling vast satellite imagery datasets to assess soil moisture. Based on this, it is anticipated that GEE can be effectively utilized to assess long-term variations of soil moisture average in major dam watersheds, in conjunction with soil moisture observation data from various locations across the country in the future.

Current status and prospects of plant diagnosis and phenomics research by using ICT remote sensing system (ICT 원격제어 system 이용 식물진단, Phenomics 연구현황 및 전망)

  • Jung, Yu Jin;Nou, Ill Sup;Kim, Yong Kwon;Kim, Hoy Taek;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.43 no.1
    • /
    • pp.21-29
    • /
    • 2016
  • Remote Sensing (RS) is a technique to obtain necessary information in a non-contact and non-destructive method by using various sensors on the surface, water or atmospheric phenomena. These techniques combine elements such as sensors, and platform and information communication technology (ICT) for mounting the sensor. ICT has contributed significantly to the success of smart agriculture through quantification and measurement of environmental factors and information such as weather, crop and soil management to distribution and consumption stage, as well as the production stage by the cloud computer. Remote sensing techniques, including non-destructive non-contact bioimaging (remote imaging) is required to measure the plant function. In addition, bioimaging study in plant science is performed at the gene, cellular and individual plant level. Recently, bioimaging technology is considered the latest phenomics that identifies the relationship between the genotype and environment for distinguishing phenotypes. In this review, trends in remote sensing in plants, plants diagnostics and response to environment and status of plants phonemics research were presented.

APPLICATION AND CROSS-VALIDATION OF SPATIAL LOGISTIC MULTIPLE REGRESSION FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS

  • LEE SARO
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.302-305
    • /
    • 2004
  • The aim of this study is to apply and crossvalidate a spatial logistic multiple-regression model at Boun, Korea, using a Geographic Information System (GIS). Landslide locations in the Boun area were identified by interpretation of aerial photographs and field surveys. Maps of the topography, soil type, forest cover, geology, and land-use were constructed from a spatial database. The factors that influence landslide occurrence, such as slope, aspect, and curvature of topography, were calculated from the topographic database. Texture, material, drainage, and effective soil thickness were extracted from the soil database, and type, diameter, and density of forest were extracted from the forest database. Lithology was extracted from the geological database and land-use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using landslide-occurrence factors by logistic multiple-regression methods. For validation and cross-validation, the result of the analysis was applied both to the study area, Boun, and another area, Youngin, Korea. The validation and cross-validation results showed satisfactory agreement between the susceptibility map and the existing data with respect to landslide locations. The GIS was used to analyze the vast amount of data efficiently, and statistical programs were used to maintain specificity and accuracy.

  • PDF

CROSS-VALIDATION OF ARTIFICIAL NEURAL NETWORK FOR LANDSLIDE SUSCEPTIBILITY ANALYSIS: A CASE STUDY OF KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.298-301
    • /
    • 2004
  • The aim of this study is to cross-validate of spatial probability model, artificial neural network at Boun, Korea, using a Geographic Information System (GIS). Landslide locations were identified in the Boun, Janghung and Youngin areas from interpretation of aerial photographs, field surveys, and maps of the topography, soil type, forest cover and land use were constructed to spatial data-sets. The factors that influence landslide occurrence, such as slope, aspect and curvature of topography, were calculated from the topographic database. Topographic type, texture, material, drainage and effective soil thickness were extracted from the soil database, and type, diameter, age and density of forest were extracted from the forest database. Lithology was extracted from the geological database, and land use was classified from the Landsat TM image satellite image. Landslide susceptibility was analyzed using the landslide­occurrence factors by artificial neural network model. For the validation and cross-validation, the result of the analysis was applied to each study areas. The validation and cross-validate results showed satisfactory agreement between the susceptibility map and the existing data on landslide locations.

  • PDF

DISTRIBUTION AND SCOPE ANALYSIS OF SOIL AND WATER POLLUTION CONTAMINANT AT ABANDONED METALLIFEROUS MINES USING GIS

  • Kim, Jung-A;Yoon, Suk-Ho;Choi, Jong-Kuk;Kim, Won-Kyun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.721-724
    • /
    • 2006
  • Among many sources of soil and water pollution, former mining regions also play an important role in distribution and scope of pollution. In response, KMRC has made an investigation into the status mine hazard at the abandoned metalliferous mine area in Korea. In this study, we analyzed distribution of mine hazards at abandoned metalliferous mines using GIS. We considered the distribution of mine hazards and its magnitude for each abandoned mine and displayed the mine hazard index (MHI) using GIS. We divided the MHI value for each mine into 5 classes, and displayed the first class as smallest point symbol and the last class as biggest point symbol. The biggest symbol shows the most serious status of mine hazards. This GIS function was included in the AMGIS system KMRS are running, and it would be helpful to make decision of reclamation priority at abandoned metalliferous mine area.

  • PDF

DEVELOPING PREDICTIVE METHOD FOR FOREST SITE DISTRIBUTION USING SATELLITE IMAGERY AND TPI (TOPOGRAPHIC POSITION INDEX)

  • Kim, Dong-Young;Jo, Myung-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.281-284
    • /
    • 2008
  • Due to the remarkable development of the GIS and spatial information technology, the information on the national land and scientific management are disseminated. According to the result of research for an efficient analysis of forest site, it presents distinguishing of satellite image and methodology of TPI (Topographic Position Index). The prediction of forest site distribution through this research, specified Gyeongju-si area, gives an effect to distinguishing honor system through Quickbird image with the resolution 0.6m. Furthermore it was carried out through TPI grid that is abstracted by DEM, slope of study area and type of topography, as well as it put its operation on analysis and verification of relativity between the result of prediction on forest site distribution and the field survey report. It distinguishes distribution of country rock that importantly effects to producing of soil, using 1: 5000 forest maps and grasping distribution type of soil using satellite image and TPI, it is supposed to provide a foundation of the result on prediction of forest site. With the GIS techniques of analysis, inclination of discussion, altitude, etc, and using high resolution satellite image and TPI, it is considered to be capable to provide more exact basis information of forest resources, management of forest management both in rational and efficient.

  • PDF

A Study of Runoff Curve Number Estimation Using Land Cover Classified by Artificial Neural Networks (신경망기법으로 분류한 토지피복도의 CN값 산정 적용성 검토)

  • Kim, Hong-Tae;Shin, Hyun-Suk
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.633-645
    • /
    • 2003
  • The techniques of GIS and remote sensing are being applied to hydrology, geomorphology and various field of studies are performed by many researcher, related those techniques. In this paper, curve number change detection is tested according to soil map and land cover in mountain area. Neural networks method is applied for land cover classification and GIS for curve number calculation. The first, sample area are selected and tested land cover classification, NN(84.1%) is superior to MLC(80.9%). So we selected NN with land cover classifier. The second, curve number from the land cover by neural network classifier(57) is compared with that(curve number) from the land cover by manual work(55). Two values are so similar. The third, curve number classified by NN in sample area was applied and tested to whole study area. As results of this study, it is shown that curve number is more exact and efficient by using NN and GIS technique than by (using) manual work.