• Title/Summary/Keyword: Soil Resistivity

Search Result 258, Processing Time 0.028 seconds

Interpretation of Soft Ground Deformation under Embankment using the Electrical Resistivity Survey (전기비저항탐사를 이용한 성토하부 연약지반의 변형 해석)

  • Kim, Jae-Hong;Hong, Won-Pyo;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Soil deformations such as settlement, heaving and lateral flow have frequently happened on marine reclaimed soft grounds due to embankment filling or banking. The electrical resistivity survey was applied to investigate on ground surface such soil deformation without disturbance of ground. A test embankment was performed to assess soil deformation in marine reclaimed soft grounds, where was located at Sihwa area in western coast of Korean peninsula. The soft ground was composed of clayey sediments. After embankment filling, the boundary of soil deformation affected by the filling could be investigated with application of the electrical resistivity survey. The result of electric resistivity survey shows that the extent of deformation is about 5 m laterally to the southern direction of embankment and about 5~6 m vertically in depth, which is about 1-1.2 times of embankment height. This shows that the electric resistivity survey can be applied to interpret the ground deformation in a soft ground region.

Laboratory chamber test for prediction of hazardous ground conditions ahead of a TBM tunnel face using electrical resistivity survey (전기비저항 탐사 기반 TBM 터널 굴진면 전방 위험 지반 예측을 위한 실내 토조실험 연구)

  • Lee, JunHo;Kang, Minkyu;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.451-468
    • /
    • 2021
  • Predicting hazardous ground conditions ahead of a TBM (Tunnel Boring Machine) tunnel face is essential for efficient and stable TBM advance. Although there have been several studies on the electrical resistivity survey method for TBM tunnelling, sufficient experimental data considering TBM advance were not established yet. Therefore, in this study, the laboratory-scale model experiments for simulating TBM excavation were carried out to analyze the applicability of an electrical resistivity survey for predicting hazardous ground conditions ahead of a TBM tunnel face. The trend of electrical resistivity during TBM advance was experimentally evaluated under various hazardous ground conditions (fault zone, seawater intruded zone, soil to rock transition zone, and rock to soil transition zone) ahead of a tunnel face. In the course of the experiments, a scale-down rock ground was provided using granite blocks to simulate the rock TBM tunnelling. Based on the experimental data, the electrical resistivity tends to decrease as the tunnel approaches the fault zone. While the seawater intruded zone follows a similar trend with the fault zone, the resistivity value of the seawater intrude zone decreased significantly compared to that of the fault zone. In case of the soil-to-rock transition zone, the electrical resistivity increases as the TBM approaches the rock with relatively high electrical resistivity. Conversely, in case of the rock-to-soil transition zone, the opposite trend was observed. That is, electrical resistivity decreases as the tunnel face approaches the rock with relatively low electrical resistivity. The experiment results represent that hazardous ground conditions (fault zone, seawater intruded zone, soil-to-rock transition zone, rock-to-soil transition zone) can be efficiently predicted by utilizing an electrical resistivity survey during TBM tunnelling.

Development of Resistivity Seismic Flat Dilatometer Testing System for Characterizing Soft Soil Site (연약지반조사를 위한 전기비저항 탄성파 Flat DMT 장비의 개발 및 적용)

  • Bang, Eun-Seok;Sung, Nak-Hoon;Kim, Yeong-Sang;Park, Sam-Kyu;Kim, Jung-Ho;Kim, Dong-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.251-256
    • /
    • 2007
  • The aim of this paper is development of resistivity seismic dilatometer (RSDMT) system. The resistivity module for obtaining apparent resistivity depth plot and seismic module for obtaining shear wave velocity (Vs) depth plot are attached to the conventional flat dilatometer testing equipment. From shear wave velocity profile, the stiffness at low strains of a site can be evaluated in undisturbed condition. And the resistivity value contains some information about water content and mineral characteristics of clayey soil. Specially manufactured resistivity and seismic modules were connected between commercialized DMT blade and drilling rod. To enhance reliability and repeatability of RSDMT test, automatic testing system including notebook based data acquisition system and automatic surface source system were developed. RSDMT system can be performed rapidly and can obtaine more reliable data at the same point compared with the separated testing system. The verification studies for the developed RSDMT system are going to be performed. From these studies, the effectiveness of integrated hybrid testing system will be checked in light of proper evaluation of geotechnical design parameters of clayey soils.

  • PDF

Subsurface Contaminant Leak Detection System using Electrical Resistivity Measurement (전기비저항을 이용한 지반오염누출감지시스템 개발)

  • 박준범;오명학;이주형
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.11a
    • /
    • pp.42-71
    • /
    • 2001
  • Leakage detection system can possibly locate leak point without laboratory analysis. Several different types of sensors provide these benefits. But the use of these technologies is not widespread, mainly because of cost. Each of the leakage detection systems available has different advantages and disadvantages. The ideal system would be affordable, durable enough to last through the life of the landfill, automated, and applicable to all types of landfills. The laboratory tests were performed to investigate the relationship between electrical resistivity and the unsaturated subsurface condition and to evaluate the contamination due to leachate based on measuring electrical resistivity. The results of experiment show that the electrical resistivity of soil decreases as moisture density increases. The electrical resistivity of soil decreases as the concentration of leachate in pore fluid increases. These facts indicate that electrical resistivity method can be a promising tool in detecting of leachate. Also, the field model tests were conducted to verify that detection of leachate leak point on detection system using electrical characteristics is accurate. Field model test results of leakage detection system imply that the leakage detection system using electrical characteristics have the great potential of detecting exactly the leak point of leachate.

  • PDF

Assessment of Frozen Soil Characterization Via Electrical Resistivity Survey (전기비저항 탐사를 활용한 동결 지반의 거동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.115-125
    • /
    • 2023
  • In this study, we evaluated the behavior of frozen soil using an electrical resistivity survey method-a nondestructive technique-and examined its characteristics through field experiments. Frozen soil was artificially prepared by injecting fluid to accelerate the freezing process, and naturally frozen soil was selected in a nearby area for comparison. A dynamic cone penetration test (DCPT) was performed to compare the reliability of the electrical resistivity survey, and time-domain reflectometry surveys were performed to assess the moisture content of the ground. Field experiments were conducted in February-when the atmosphere temperature was below freezing-and May-when the temperature was above freezing. This temperature-compensated method was used to determine reliability because the behavior of frozen soil depends on the underlying temperature. In the resistivity survey method, a section of high electrical resistivity was observed under freezing conditions due to the frozen water and converted into porosity. The converted porosity was compared with the porosity inferred from the DCPT, and the results showed that the measured electrical resistivity was valid.

Application of Resistivity Seismic Flat Dilatometer (RSDMT) System for Multiple Evaluation of the Soft Soil Site (연약지반의 복합적 평가를 위한 전기비저항 탄성파 Flat DMT 장비 적용)

  • Bang, Eun-Seok;Kim, Young-Sang;Park, Sam-Gyu;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.12
    • /
    • pp.111-122
    • /
    • 2012
  • Resistivity seismic dilatometer (RSDMT) system is introduced. The resistivity module for obtaining resistivity-depth plot and seismic module for obtaining wave velocity-depth plot are attached to the conventional flat dilatometer testing equipment. To enhance the reliability and repeatability of seismic part in RSDMT, automatic testing system including automatic surface source, PC based data acquisition system and operating program was constructed. To obtain real resistivity value of soil, geometric factor for the array of electrodes in RSDMT was derived empirically. The verification studies for the developed RSDMT system were performed with SPT, CPTu, bender element test and DC resistivity survey. Through one penetration of RSDMT, various soil parameters were obtained and the reliability and repeatability of developed RSDMT system could be checked.

Soil Resistivity Measurement System using Multi-auxiliary Electrodes (다전극 대지저항률 측정시스템)

  • Kim, Hwang-Kuk;Choi, Jae-Sung;Jang, Un-Yong;Park, Dae-Won;Kil, Gyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.892-899
    • /
    • 2009
  • This paper describes the design and fabrication of a soil resistivity measurement system using 9 auxiliary electrodes; 6 potential-, a reference-, a current-, and a ground- electrode. The measurement system is composed of a current source (300 [Vrms], 5 [A], Sine-wave, 45 $\sim$ 500 [Hz]), a data acquisition (400 [kS/s], 16 bit, 16 Ch.), and an operating program based on a graphical software of National Instrument Co. The proposed system is convenient for choosing the position of electrodes because the soil resistivity is calculated having no concern with the length and the spacing between electrodes.

  • PDF

염수침입 현상의 전기비저항 분석에 대한 지구통계기법의 응용

  • 심병완;정상용;김병우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.92-96
    • /
    • 2001
  • Although the problem of seawater intrusion at the coastal aquifer was recognized before over one hundred years at the coastal aquifer, much groundwater keep on being salinitized by several reasons such as groundwater exhaustion, coastalline change, and human activities. The horizontal and vertical electrical soundings and geostatistical methods were used to define the local characteristics of saltwater intrusion and to estimate the saltwater interface in the southeastern area of the Pusan City. The 24 points of the Schlumberger vertical electrical soundings(VES) to loom depth and the 2 lines of dipole-dipole horizontal soundings are peformed. The resistivity data have lognormal distributions. The horizontal extents of saline water intrusion were estimated from the inversion of horizontal prospecting data. Lognormal ordinary kriging is used in A-A' resistivity profiles on May and July because the data have stationary models in semivariograms. Lognormal IRF-k kriging is used for the isopleth maps using vertical resistivity data. The 10 ohm-m resistivity line on the isopleth maps of 21m, 30m, 50m, and 70m depth using resisitivity data measured in July is sifted to the east, cpomparing that of the isopleth maps measured in May. The kriged vertical and horizontal resistivity isopleth maps suggested that the geostatistical methods can be used to define the variation of earth resistivity distribution at the saltwater interface.

  • PDF

Geophysical Surveys for Mapping of the AMD Contaminant Channels at an Abandoned Mine (폐광산의 AMD 오염영역탐지를 위한 지구물리탐사)

  • 김지수;최상훈;한수형
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.258-261
    • /
    • 2000
  • Geophysical surveys (electrical resistivity, self-potential, and magnetic methods) and streamwater sample analysis have been carried out at a site of tailings of waste deposits in an abandoned mine, Jangpoong, which is situated in Kowesan-Gun, Chungbuk-Do. The research was aimed at investigating the suitability of the various geophysical methods for detection of AMD (acid mine drainage) paths, and ultimately mapping of preferred AMD flow channels by incorporating the water sample analysis. Electrical resistivity section from the dipole-dipole line represents the low-resistivity zone trending northwest toward the stream nearby. The positions of the resistivity anomalies for AMD channels are well correlated to the ones from the various geophysical surveys. In addition they correspond to the sites of the higher peaks for the pH, EC, heavy metal content for the water sample data.

  • PDF

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.