• 제목/요약/키워드: Soil Prediction Model

검색결과 523건 처리시간 0.028초

Predicting Organic Matter content in Korean Soils Using Regression rules on Visible-Near Infrared Diffuse Reflectance Spectra

  • Chun, Hyen-Chung;Hong, Suk-Young;Song, Kwan-Cheol;Kim, Yi-Hyun;Hyun, Byung-Keun;Minasny, Budiman
    • 한국토양비료학회지
    • /
    • 제45권4호
    • /
    • pp.497-502
    • /
    • 2012
  • This study investigates the prediction of soil OM on Korean soils using the Visible-Near Infrared (Vis-NIR) spectroscopy. The ASD Field Spec Pro was used to acquire the reflectance of soil samples to visible to near-infrared radiation (350 to 2500 nm). A total of 503 soil samples from 61 Korean soil series were scanned using the instrument and OM was measured using the Walkley and Black method. For data analysis, the spectra were resampled from 500-2450 nm with 4 nm spacing and converted to the $1^{st}$ derivative of absorbance (log (1/R)). Partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil OM. Regression rules model estimates the target value by building conditional rules, and each rule contains a linear expression predicting OM from selected absorbance values. The regression rules model was shown to give a better prediction compared to PLSR. Although the prediction for Andisols had a larger error, soil order was not found to be useful in stratifying the prediction model. The stratification used by Cubist was mainly based on absorbance at wavelengths of 850 and 2320 nm, which corresponds to the organic absorption bands. These results showed that there could be more information on soil properties useful to classify or group OM data from Korean soils. In conclusion, this study shows it is possible to develop good prediction model of OM from Korean soils and provide data to reexamine the existing prediction models for more accurate prediction.

구동륜(驅動輪)의 성능예측(性能豫測)에 적합한 토양변수(土壤變數)의 차원해석(次元解析)을 위한 차륜(車輪)-토양(土壤) 시스템의 상사성(相似性) 연구(硏究)(I) -견인력(牽引力) 예측(豫測) 분석(分析)- (A Similitude Study of Soil-Wheel System for Identifying the Dimension of Pertinent Soil Parameter(I) -Pull Prediction Analysis-)

  • 이규승;정창주
    • Journal of Biosystems Engineering
    • /
    • 제14권2호
    • /
    • pp.67-79
    • /
    • 1989
  • This study was conducted to investigate the applicability of true model theory for pull prediction in a powered lugged wheel-soil system and to examine the possibility of using principles of similitude in investigating the dimensions of soil parameters pertinent to a powered lugged wheel-soil system concerning the pull prediction. The following conclusions were derived from the study; 1) The pull of prototype wheels proved to be predicted by those of the model wheels for the range of the dynamic weight tested. The pull curves of models and prototype were respectively very similar in the shape. From this basic knowledge, it was enabled to apply the similitude theory to the performance prediction of the true model. 2) A conditional equation which can be used for the prediction of pull of prototype by model test was derived as follows. $n_f=n_1^{-b}$ where $n_f$ : force scale = $w/w_m$ $n_1$ : length scale = ${\ell}/{\ell}_m$ b : exponent on the length dimension of the soil property ${\alpha}$ The range of the numerical value of b, which was determined by the least square method, was found to be -2.0~-2.6. 3) Considering a relatively wide variation of b values in the pull prediction, b is considered to be a function of many variales. Thus it was concluded that there are several soil properties which are pertinent to the powered lugged-wheel-soil system concerning the pull prediction, and these soil properties may have the different effects on the pull of model and protytype wheels, to give the different dimension on the soil parameters.

  • PDF

식물생산시스템의 다목적 환경예측 모델의 개발 -기본 시스템 구축 및 응용- (Development of a Multipurpose-Oriented Environmental Prediction Model for Plant Production System - Construction of the Basic System and its Application -)

  • 손정익;이동근;김문기
    • 생물환경조절학회지
    • /
    • 제2권2호
    • /
    • pp.126-135
    • /
    • 1993
  • Recently, the characteristic of plant production systems in Korea has been changed with the strong trends of integration and large scale, using environmental control techniques. To satisfy this change successfully, first of all, the environmental prediction inside the system must be preceded. While many environmental prediction models for plant production system were developed by many persons, each model cannot be applied to the every situation without the perfect understanding of source codes and the technical modification. The purpose of this study is building the environmental prediction model to predict and evaluate the environment inside the system numerically, and also developing the multipurpose program available for practical design. The model consisted of the basic system model, the cultivation related model and the environmental control related model. The contents of each model are as follows : the basic system model is dealing with thermal and light environments, soil environment and ventilation : the cultivation related model with soil and hydroponic cultures ; and the environmental control related model with thermal curtain and heat exchanging system. The environmental prediction model was developed using a common simulation program, PCSMP, so that it could be easily understood and modified by anyone. Finally, the model was executed and verified through comparison between simulated and measured results for soil culture, and both results showed good agreements.

  • PDF

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

구동륜(驅動輪)의 성능예측(性能豫測)에 적합한 토양변수(土壤變數)의 차원해석(次元解析)을 위한 차륜(車輪)-토양(土壤) 시스템의 상사성(相似性) 연구(硏究)(II) -침하량(沈下量) 예측(豫測) 분석(分析)- (A Similitude Study of Soil-Wheel System for Inentifying the Dimension of Pertinent Soil Parameter (II) -Sinkage Prediction Analysis-)

  • 이규승;정창주
    • Journal of Biosystems Engineering
    • /
    • 제14권3호
    • /
    • pp.158-167
    • /
    • 1989
  • This study was conducted to investigate the applicability of true model theory in a powered lugged wheel-soil system and to examine the possibility of using principles of similitude in investigating the dimensions of soil parameters pertinent to a powered lugged wheel-soil system concerning the sinkage prediction. The following conclusions were derived from the study; 1) The sinkage of prototype wheels proved to be predicted by those of the model wheels for the range of the dynamic weight tested. 2) A conditional equation which can be used for the prediction of sinkage of prototype by model test was derived as $n_f=n{_\ell}{^{-b}}$. The range of the numerical value of b, which is the exponent on the length dimension of the soil property ${\alpha}$, was found to be -1.48~-2.54. 3) Considering a relatively wide variation of b values, it was concluded that there are several soil properties which are pertinent to the powered lugged-wheel soil system concerning the sinkage prediction.

  • PDF

다항회귀분석을 활용한 혼합경량토의 강도산정 모델 개발 (Development of Strength Prediction Model for Lightweight Soil Using Polynomial Regression Analysis)

  • 임병권;김윤태
    • 한국해양공학회지
    • /
    • 제26권2호
    • /
    • pp.39-47
    • /
    • 2012
  • The objective of this study was to develop a strength prediction model using a polynomial regression analysis based on the experimental results obtained from ninety samples. As the results of a correlation analysis between various mixing factors and unconfined compressive strength using SPSS (statistical package for the social sciences), the governing factors in the strength of lightweight soil were found to be the crumb rubber content, bottom ash content,and water-cement ratio. After selecting the governing factors affecting the strength through the correlation analysis, a strength prediction model, which consisted of the selected governing factors, was developed using the polynomial regression analysis. The strengths calculated from the proposed model were similar to those resulting from laboratory tests (R2=87.5%). Therefore, the proposed model can be used to predict the strength of lightweight mixtures with various mixing ratios without time-consuming experimental tests.

풍화잔적토의 불포화전단강도 예측 및 특성연구 (Characteristics and Prediction of Shear Strength for Unsaturated Residual Soil)

  • 이인모;성상규;양일순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.377-384
    • /
    • 2000
  • The characteristics and prediction model of the shear strength for unsaturated residual soils was studied. In order to investigate the influence of the initial water content on the shear strength, unsaturated triaxial tests were carried out varying the initial water content, and the applicability of existing prediction models for the unsaturated shear strength was testified. It was shown that the soil - water characteristic curve and the shear strength of the unsaturated soil varied with the change of the initial water content. A sample compacted in the lower initial water content needs a higher suction to get the same degree of saturation while the shear strength of a sample with the lower initial water content displays a lower value. In order to apply the existing prediction models of the unsaturated shear strength to granite residual soils, a correction coefficient, α, on the internal friction angle, ø'was added.

  • PDF

가시·근적외 분광 스펙트럼을 이용한 토양 이화학성 추정 (Quantification of Soil Properties using Visible-NearInfrared Reflectance Spectroscopy)

  • 최은영;홍석영;김이현;송관철;장용선
    • 한국토양비료학회지
    • /
    • 제42권6호
    • /
    • pp.522-528
    • /
    • 2009
  • 농경지에서 채취한 30개의 토양 Profile에 대해 깊이별로 채취한 시료를 이용하여 pH, CEC, Ca, Mg, Org.C항목에 대해 분광 스펙트럼과 화학분석에 의한 토양 특성값의 통계적 정량화를 수행하였다. 추정모델의 신뢰도를 높이기 위해 원시 반사 스펙트럼 외에도 Log, 도함수, Continuum 제거 등의 변환을 거친 스펙트럼을 입력변수로 이용하였고 그 중에서CR스펙트럼은 각 토양 특성 항목과 일괄 추정, 유형별 추정식의 모든 경우에서 통계적 유의성을 가진 추정 결과를 보였다. 특정 토양 특성 항목에서는 다른 변환 스펙트럼이 더 유의한 결과를 나타내었지만, 동시 다항목 분석을 하는 경우 CR 스펙트럼을 이용하는 것이 분석의 신속성과 용이성을 제공할 것으로 사료된다. 추정모델 성능 향상을 위해 토양의 여러 특성에 의한 스펙트럼의 변화 중에서 큰 요인 중 하나인 토색과 관련된 Fe에 의한 500-1200 nm 영역에서의 흡수 스펙트럼 특징에 의해 유형을 나누어 추정모델을 도출하였다. 유형별 추정모델 적용 결과가 일괄 추정값보다 월등히 높은 결과를 나타내지는 않았지만, 대체적으로 유형별 추정모델이 약간 높은 유의성을 나타내었고, 특히 Ca와 CEC의 경우 상당히 향상된 결과를 보였다. 이러한 스펙트럼의 처리와 스펙트럼의 유형 분류 등을 고려한 정량 추정 모델을 통해 가시 근적 외 영역의 스펙트럼을 이용하여 토양의 특성을 동시에 다항목에 대한 분석을 신속하게 수행할 수 있을 것으로 판단된다. 이러한 추정 모델은 토양 특성에 대해 광역 단위에서 다량의 시료 분석에 유용하므로 지역, 세계 규모의 디지털 토양 매핑, 토양 분류 및 원격탐사 자료와의 연계 분석에 활용될 수 있을 것으로 사료된다.

토양의 산/염기 완충능의 모델링 (Modeling of Acid/Base Buffer Capacity of soils)

  • 김건하
    • 한국토양환경학회지
    • /
    • 제3권3호
    • /
    • pp.3-10
    • /
    • 1998
  • 토양의 산/염기 완충능은 토양-오염물질-공극수로 이루어진 시스템의 pH에 직접적인 영향을 미치므로 오염물질의 토양내 거동예측시에 많은 영향을 미치는 매우 중요한 토양의 성질이다. 본 연구는 이중확산층이론과 two layer electrostatic 흡착모델을 응용하여 토양의 산/염기 완충능의 이론모델을 유도하고 이 모델의 적용절차를 제시하였다. 산-염기 적정실험을 통하여 두 종류의 카올리나이트의 완충능을 실측하고 이를 본 연구에서 개발된 모델의 예측치와 비교하였다.

  • PDF

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • 한국환경농학회지
    • /
    • 제27권4호
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.