• 제목/요약/키워드: Soil Moisture Management

검색결과 246건 처리시간 0.027초

오이 시설재배지에서의 토양수분 소비특성 분석 (Soil Moisture Extraction Characteristics of Cucumber Crop in Protected Cultivation)

  • 홍은미;최진용;남원호;강문성;장정렬
    • 한국농공학회논문집
    • /
    • 제56권2호
    • /
    • pp.37-46
    • /
    • 2014
  • Water for crop growth were supplied by irrigation in protected cultivation and these are accumulated in the soil and utilized for crop evapotranspiration. The study for analyzing soil moisture characteristics is necessary for adequate irrigation water and soil water management in protected cultivation. Soil moisture content, irrigation water quantity and meteorological data were monitored to analyze soil moisture increment and extraction characteristics in terms of soil layers and cucumber crop growth stages. In first cropping period, the total amount of irrigation water was 5.07 mm/day, soil moisture increment was 4.82 mm/day and soil moisture extraction was 5.56 mm/day. In second cropping period, the total amount of irrigation water was 4.82 mm/day, soil moisture increment was 4.65 mm/day and soil moisture extraction was 4.73 mm/day. Soil moisture extraction rate from 0 to 75 cm is 90.3 % in first cropping period and 79.1 % in second cropping period. The majority irrigation water were consumed in root zone, however, about 15 % of soil moisture were losses by infiltration in lower soil layer. Soil moisture extraction and extraction pattern of cucumber crop calculated in this study can be utilized as a basic data for irrigation water management in protected cultivation.

머신러닝 기반 노지 환경 변수에 따른 예측 토양 수분에 미치는 영향에 대한 연구 (A study on the impact on predicted soil moisture based on machine learning-based open-field environment variables)

  • 정광훈;이명훈
    • 스마트미디어저널
    • /
    • 제12권10호
    • /
    • pp.47-54
    • /
    • 2023
  • 지구 온난화로 인해 갑작스러운 기후변화와 농업 생산성에 대한 이해가 점점 중요해지면서, 토양 수분 예측은 농업에서 핵심 주제로 떠오르고 있다. 토양 수분은 농작물의 성장과 건강에 큰 영향을 미치며, 적절한 관리와 정확한 예측은 농업 생산성 향상과 자원 관리의 핵심 요소이다. 이러한 이유로 토양 수분 예측은 농업 및 환경 분야에서 큰 주목을 받고 있다. 본 논문에서는 머신러닝 알고리즘인 랜덤 포레스트를 통하여 시범포를 이용하여 노지 환경 데이터를 수집하고 분석하여 데이터 특성들과 토양 수분의 상관관계를 구하고 토양 수분 실제 값과 예측값을 비교하였으며 비교 결과 예측률이 약 92%의 정확성을 갖는다는 것을 확인하였다. 추후 연구를 통해 작물의 생장 데이터 변수들을 추가하여 토양 수분 예측을 진행한다면 토양 수분에 따른 작물의 생장 속도, 적절한 관수 타이밍 등의 주요 정보를 정확하게 제어함으로써 작물의 품질 상승, 물 관리 효율 증가 등 생산성 및 자원 효율성에 좋은 영향을 미칠 것이라고 기대된다.

실내조경에 있어서 양치식물의 수분환경 관리방안에 관한 연구 (A Study on the Management Plan of Water Environment of Ferns in the Interior Landscape)

  • 주진희;방광자;설종호
    • 한국조경학회지
    • /
    • 제27권1호
    • /
    • pp.122-131
    • /
    • 1999
  • Indoor environments are usually less than optimal for the growth of ferns, especially in regards to the water condition. These studies were performed to investigate responses involved in causing growth of ferns and presume management plan against the water deficit under indoor conditions. The effect of air humidity and soil moisture on the ferns was examined in Adiantume raddianum and Selaginella kraussiana. Results of experiments are as follows; 1. Under a low humidity condition, having a 25-50% RH. ornamental value of ferns decreased much more than under a 90% RH. Under a low soil moisture, such as sand treatment, ornamental value of ferns also decreased. 2. Leaf chlorophyll content, water content and stomata situations increased as air humidity and soil moisture went up. 3. Even if air humidity and soil water were not enough for ferns growth, the extending of irrigation cycle was helpful. 4. Under extremely low air humidity conditions, some water management, namely, using water holding soil or extending of irrigation cycle was desirable. Other methods of increasing air humidity, including water instruments such as ornamental pools, waterfalls, or fountains, grouping plants together were also helpful. But spraying water on leaves increased injury to ferns growth because of excess evaporation from the leaves. Though these studies, we learn that ferns are susceptible to water condition such as air humidity, soil water and water management. If other environmental factos are maintained with optimal conditions, water condition plays an important role in ferns growth in indoor environments.

  • PDF

물수지 기반 지역별 토양수분을 활용한 밭가뭄 평가 (Assessment of Upland Drought Using Soil Moisture Based on the Water Balance Analysis)

  • 전민기;남원호;양미혜;문영식;홍은미;옥정훈;황선아;허승오
    • 한국농공학회논문집
    • /
    • 제63권5호
    • /
    • pp.1-11
    • /
    • 2021
  • Soil moisture plays a critical role in hydrological processes, land-atmosphere interactions and climate variability. It can limit vegetation growth as well as infiltration of rainfall and therefore very important for agriculture sector and food protection. Recently, due to the increased damage from drought caused by climate change, there is a frequent occurrence of shortage of agricultural water, making it difficult to supply and manage stable agricultural water. Efficient water management is necessary to reduce drought damage, and soil moisture management is important in case of upland crops. In this study, soil moisture was calculated based on the water balance model, and the suitability of soil moisture data was verified through the application. The regional soil moisture was calculated based on the meteorological data collected by the meteorological station, and applied the Runs theory. We analyzed the spatiotemporal variability of soil moisture and drought impacts, and analyzed the correlation between actual drought impacts and drought damage through correlation analysis of Standardized Precipitation Index (SPI). The soil moisture steadily decreased and increased until the rainy season, while the drought size steadily increased and decreased until the rainy season. The regional magnitude of the drought was large in Gyeonggi-do and Gyeongsang-do, and in winter, severe drought occurred in areas of Gangwon-do. As a result of comparative analysis with actual drought events, it was confirmed that there is a high correlation with SPI by each time scale drought events with a correlation coefficient.

SMAP 토양수분을 위한 Landsat 기반 상세화 기법 개발 (Development of Landsat-based Downscaling Algorithm for SMAP Soil Moisture Footprints)

  • 이태화;김상우;신용철
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.49-54
    • /
    • 2018
  • With increasing satellite-based RS(Remotely Sensed) techniques, RS soil moisture footprints have been providing for various purposes at the spatio-temporal scales in hydrology, agriculture, etc. However, their coarse resolutions still limit the applicability of RS soil moisture to field regions. To overcome these drawbacks, the LDA(Landsat-based Downscaling Algorithm) was developed to downscale RS soil moisture footprints from the coarse- to finer-scales. LDA estimates Landsat-based soil moisture($30m{\times}30m$) values in a spatial domain, and then the weighting values based on the Landsat-based soil moisture estimates were derived at the finer-scale. Then, the coarse-scale RS soil moisture footprints can be downscaled based on the derived weighting values. The LW21(Little Washita) site in Oklahoma(USA) was selected to validate the LDA scheme. In-situ soil moisture data measured at the multiple sampling locations that can reprent the airborne sensing ESTAR(Electronically Scanned Thinned Array Radiometer, $800m{\times}800m$) scale were available at the LW21 site. LDA downscaled the ESTAR soil moisture products, and the downscaled values were validated with the in-situ measurements. The soil moisture values downscaled from ESTAR were identified well with the in-situ measurements, although uncertainties exist. Furthermore, the SMAP(Soil Moisture Active & Passive, $9km{\times}9km$) soil moisture products were downscaled by the LDA. Although the validation works have limitations at the SMAP scale, the downscaled soil moisture values can represent the land surface condition. Thus, the LDA scheme can downscale RS soil moisture products with easy application and be helpful for efficient water management plans in hydrology, agriculture, environment, etc. at field regions.

토양수분측정을 위한 센서 네트워크에 관한 연구 (A Study of Sensor Network for Soil Moisture Measurement)

  • 김기환
    • 한국인터넷방송통신학회논문지
    • /
    • 제12권1호
    • /
    • pp.239-243
    • /
    • 2012
  • 본 논문에서는 전기 저항식 수분 측정 방식을 선택한 토양수분센서를 제안하였다. 이 방식은 토양내의 수분량에 따라 저항의 변화가 생기는 것을 전기적인 신호로 변환하여 토양수분량과의 관계를 비교하여 수분량을 측정하는 방식으로 방법이 간단하며 저렴한 비용으로 간단하게 장치를 구현하였으며, 시리얼통신을 이용하여 여러 개의 센서를 하나의 네트워크에 묶어 사용하였다. 이 센서 네트워크를 사용하여 IMS(Internet Management System)에 적용하였으며, 센서 네트워크가 웹에서도 잘 작동함을 보였다.

Analyzing Growth Reactions of Herbaceous Plants for Irrigation Management

  • Jeong, Myeong Il;Jeong, Na Ra;Han, Seung Won;Kim, Jae Soon
    • 인간식물환경학회지
    • /
    • 제23권3호
    • /
    • pp.255-265
    • /
    • 2020
  • Background and objective: The purpose of this study was to provide guidelines for irrigation management by analyzing the effects of soil moisture on the growth characteristics of herbaceous plants in green infrastructure. Methods: In a rain shelter greenhouse, the growth performance of nine species of experimental plants was assessed under different soil moisture contents (20%, 15%, 10%, 5%, and 1%) for about 5 months to analyze plant growth characteristics due to soil humidity. Methods to determine plant growth conditions include surveying growth conditions of the crowns, stems, leaves, flowers and fruits on the aerial part and surveying growth conditions of the roots in the underground part. Results: The results showed that Mukdenia rossii and Astilbe rubra grew well at 15% moisture content with irrigation intervals of 10 and 13 days, respectively. Soil moisture content of 10% with irrigation intervals of 13 and 17 days was appropriate for Sedum kamtschaticum and Pachysandra terminalis. Similarly, Aquilegia japonica and Liriope platyphylla grew well at 15% moisture content with irrigation intervals of 10 and 17 days. However, Ligularia stenocephala grew well-developed stems and roots at 1% soil moisture content and an irrigation interval of 25 days, while the optimum conditions for Lythrum anceps were 5% moisture content and an irrigation interval of 8 days. Conclusion: Although a limited number of experimental plants were used in this study, this study could propose an appropriate irrigation cycle for planting on artificial soil substrates. Based on these results, it is possible to plan suitable planting designs considered irrigation cycles.

SMAP 토양수분 이미지를 이용한 농업가뭄 평가 기법 개발 (Development of Agricultural Drought Assessment Approach Using SMAP Soil Moisture Footprints)

  • 신용철;이태화;김상우;이현우;최경숙;김종건;이기하
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.57-70
    • /
    • 2017
  • In this study, we evaluated daily root zone soil moisture dynamics and agricultural drought using a near-surface soil moisture data assimilation scheme with Soil Moisture Active & Passive (SMAP, $3km{\times}3km$) soil moisture footprints under different hydro-climate conditions. Satellite-based LANDSAT and MODIS image footprints were converted to spatially-distributed soil moisture estimates based on the regression model, and the converted soil moisture distributions were used for assessing uncertainties and applicability of SMAP data at fields. In order to overcome drawbacks of the discontinuity of SMAP data at the spatio-temporal scales, the data assimilation was applied to SMAP for estimating daily soil moisture dynamics at the spatial domain. Then, daily soil moisture values were used to estimate weekly agricultural drought based on the Soil Moisture Deficit Index (SMDI). The Yongdam-dam and Soyan river-dam watersheds were selected for validating our proposed approach. As a results, the MODIS/SMAP soil moisture values were relatively overestimated compared to those of the TDR-based measurements and LANDSAT data. When we applied the data assimilation scheme to SMAP, uncertainties were highly reduced compared to the TDR measurements. The estimated daily root zone soil moisture dynamics and agricultural drought from SMAP showed the variability at the sptio-temporal scales indicating that soil moisture values are influenced by not only the precipitation, but also the land surface characteristics. These findings can be useful for establishing efficient water management plans in hydrology and agricultural drought.

Designing a Remote Electronic Irrigation and Soil Fertility Managing System Using Mobile and Soil Moisture Measuring Sensor

  • Asim Seedahmed Ali, Osman;Eman Galaleldin Ahmed, Kalil
    • International Journal of Computer Science & Network Security
    • /
    • 제22권12호
    • /
    • pp.71-78
    • /
    • 2022
  • Electronic measuring devices have an important role in agricultural projects and in various fields. Electronic measuring devices play a vital role in controlling and saving soil information. They are designed to measure the temperature, acidity and moisture of the soil. In this paper, a new methodology to manage irrigation and soil fertility using an electronic system is proposed. This is designed to operate the electronic irrigation and adds inorganic fertilizers automatically. This paper also explains the concept of remote management and control of agricultural projects using electronic soil measurement devices. The proposed methodology is aimed at managing the electronic irrigation process, reading the moisture percentage, elements of soil and controlling the addition of inorganic fertilizers. The system also helps in sending alert messages to the user when an error occurs in measuring the percentage of soil moisture specified for crop and a warning message when change happens to the fertility of soil as many workers find difficulty in daily checking of soil and operating agricultural machines such as irrigation machine and soil fertilizing machine, especially in large projects.

고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정 (Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data)

  • 신용훈;최진용;이승재;이성학
    • 한국농공학회논문집
    • /
    • 제59권5호
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.