• Title/Summary/Keyword: Soil Moisture Content

Search Result 949, Processing Time 0.026 seconds

Effect of Different Soil Water Potentials on Growth Properties of Northern-Highbush Blueberry (토양수분포텐셜이 북부형 하이부쉬 블루베리의 생육에 미치는 영향)

  • Kim, Hong-Lim;Kwack, Yong-Bum;Kim, Hyoung-Deug;Kim, Jin-Gook;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.2
    • /
    • pp.161-167
    • /
    • 2011
  • The soil moisture has an important effect on growth and development of highbush blueberry (HB), mainly because the root system, devoid of root hairs, is superficial. Moreover, the texture and organic matter content of Korean soil is different from the main producing counties, such as USA and Canada. To facilitate the growth and development of HB and long-term maintenance of productivity, the research related to soil moisture condition in Korea should be the priority. This study was performed to investigate the growth properties of the HB in various soil moisture conditions in order to determine the irrigation trigger point and optimum soil water potential. The texture of soil used in this experiment was loam. For the experiments, the soil was mixed with peatmoss at a rates 30% (v/v). Irrigation was scheduled at -3, -4, -5, -8, -15 and -22 kPa soil water potential then investigated leaf macronutrient, bush growth, and fruit properties. The leaf K content of HB showed the same trend in the soil water potential, but Leaf P and Mg content was highest in -5 and -22 kPa, respectively. The productivity and growth amount of HB showed the peak at the range of -4~-8 kPa as normal distribution pattern, and greatly decreased at above -15 kPa. Total dry weight and Cane diameter were highest at -4 kPa, plant width, fruit weight and yield were highest at -5 kPa, and plant height, cane number and shoot tension were highest at -8 kPa. Soluble solids content showed same trend in the soil water potential, but titratable acidity, anthocyanins and total polyphenols were not significantly different. Therefore, the optimal soil water potential for the development and a maximum production of HB were a range of -4~-8 kPa, and the recommended ideal irrigation trigger point was within -15 kPa.

Physico-chemical characteristics of mangrove soil in Gulf of Kachchh, Gujarat, India

  • Rajal, Patel;Lamb, Christian;Roshan, Bhagat;Kamboj, R.D.;Harshad, Salvi
    • Advances in environmental research
    • /
    • v.8 no.1
    • /
    • pp.39-54
    • /
    • 2019
  • This paper presents comprehensive scientific details about mangrove soil in Gulf of Kachchh, Gujarat. A total of ten sites were studied during November, 2011 to December, 2014 in order to know the physico-chemical characteristics of mangrove soil. The results indicated that the soil in GoK had silty loam texture. Other physico-chemical parameters ranged as; pH: 7.39-7.61, Bulk Density: 0.30 g/㎤-0.54 g/㎤, Particle Density: 1.26 g/㎤-1.76 g/㎤, Organic Carbon: 0.70%-1.13%, Organic Matter: 1.01%-1.74% and Moisture Content: 33.45%-56.38%. The paper would be useful to the stakeholders, coastal managers and scientific communities to know the mangrove soil conditions of Gulf of Kachchh for management and planning for conservation of mangrove ecosystem.

Dynamic Deformational Characteristics of Subgrade Soils with Variations of Capillary Pressure and Water Content (모관흡수력 및 함수비에 따른 노상토의 동적변형특성 연구)

  • 김동수;김민종;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.109-122
    • /
    • 2002
  • The water content of soil near the ground subgrade varies seasonally, and dynamic deformational characteristics of soil are affected by the variation of water content. Contrary to previous studies which used various specimens of different compaction moisture contents, the influences of water content and capillary Pressure on dynamic deformational characteristics of soil were investigated using the given specimen controlling the matric suction. RC/TS(resonant column and torsional shear) testing equipment was modified so that it can control water content with changing capillary pressure(matric suction). RC/TS tests were performed on subgrade soil collected in the KHC(Korea Highway Corporation) test road. In the field, the cross-hole tests were performed and the water contents were measured at the same site to verify the feasibility and applicability of RC/TS test results. As water content decreased, the tendency of increasing shear moduli in field was well matched with laboratory test results.

Effects of Temperature, Light Intensity and Soil Moisture on Growth, Yield and Essential Oil Content in Valerian(Valeriana fauriei var. dasycarpa Hara) (쥐오줌풀의 생육 및 수량과 정유성분에 미치는 온도, 광도, 토양수분의 영향)

  • Cho, Chang-Hwan;Lee, Jong-Chul;Choi, Young-Hyun;Han, Ouk-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.22-32
    • /
    • 1997
  • This experiment was conducted to obtain information for the cultivation of Korean valerian(Valeriana lauriei var. dasycarpa Hara) which will be useful for medicinal and aromatic resources. The effect of different temperature conditions, light intensities and soil water conditions on growth, yield and component of essential oil of V. fauriei were measured at the Dankook University, Cheonan, and a study on the shading treatment was at Umsung, Chungchongbukdo, and Jinbu, Kangwondo, in 1995. V. laudei was planted at five different temperature conditions, 10, 15, 20, 25 and 3$0^{\circ}C$, eight light intensity conditions, 1, 000, 2, 500, 5, 000, 20, 000, 30, 000, 40, 000, 50, 000 and 60, 000lux, six soil water contents, 30, 45, 55, 70, 80 and 90% of the saturated soil, during growth stage. Shading treatment was three conditions, 0, 25 and 50%, during the daytime in field conditions. Photosynthesis had a highly significant relationship with temperature conditions in a quadratic regression model, from which the temperature for the plant growth was estimated to be 17.7$^{\circ}C$. A highly significant quadratic regression was noted between temperature and leaf width or root weight of V. fauriei. It was estimated from the regression equation that the optimum temperature for root growth was 20.3$^{\circ}C$. The content of essential oil and extract rate of root was the highest in the 15~2$0^{\circ}C$. Photosynthesis also was significantly affected by light intensity in a quadratic regression model, from which the optimum light intensity for the growth was estimated to be 40, 000lux. Root yield was more produced in Jinbu than that of in Umsung. The root yield was increased by the shading treatment in Umsung, whereas it was decreased by the shading treatment in Jinbu. The content of essential oil was not affected by the shading treatment of plants during the cultivation, while the compositions of components of essential oil were related to the growing locations. As soil water content was higher, the growth and content of root extract were increased. The optimum soil moisture for the growth of V. fauriei was 80~90% of the saturated soil. In summary, the results indicated that the growth, yield and component of essential oil in V. fauriei were affected by environmental factors as well as soil moisture.

  • PDF

Behaviour of micropiles in collapsible loess under tension or compression load

  • Qian, Zeng-Zhen;Lu, Xian-Long;Yang, Wen-Zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.477-493
    • /
    • 2014
  • This study examines the behaviour of single micropiles subjected to axial tension or compression load in collapsible loess under in-situ moisture content and saturated condition. Five tension loading tests and five compression loading tests on single micropiles were carried out at a typical loess site of the Loess Plateau in Northwest China. A series of laboratory tests, including grain size distribution, specific gravity, moisture content, Atterberg limits, density, granular components, shear strength, and collapse index, were carried out during the micropile loading tests to determine the values of soil parameters. The loess at the test site poses a severe collapse risk upon wetting. The tension or compression load-displacement curves of the micropiles in loess, under in-situ moisture content or saturated condition, can generally be simplified into three distinct regions: an initial linear, a curvilinear transition, and a final linear region, and the bearing capacity or failure load can be interpreted by the L1-L2 method as done in other studies. Micropiles in loess should be considered as frictional pile foundations though the tip resistances are about 10%-15% of the applied loads. Both the tension and compression capacities increase linearly with the ratio of the pile length to the shaft diameter, L/d. For micropiles in loess under in-situ moisture content, the interpreted failure loads or capacities under tension are 66%-87% of those under compression. However, the prewetting of the loess can lead to the reductions of 50% in the tensile bearing capacity and 70% in the compressive bearing capacity.

Studies on the Optimum Light Intensity for Growth ot Punux ginseng. (III) Effect of mulching on the growth of ginseng plant under different light Intensity. (인삼생육의 최적광량에 관한 연구 (제3보) 광도가 다른 조건하에서의 송면의 피복이 인삼생육에 미치는 영향)

  • Lee, Jong-Cheol;Cheon, Seong-Gi;Kim, Yo-Tae
    • Journal of Ginseng Research
    • /
    • v.6 no.2
    • /
    • pp.154-161
    • /
    • 1982
  • To determine the effects of mulching with the hulls of rice on the growth of the ginseng plant and changes of its growing environment-soil moisture content. subterranccan temperature and soil hardness- were investigated under different light intensity such as 5%, 10%, 20%, and 30% light transmittance rate(LTR). The results obtained were as follows; 1. Soil moisture content under the shading was decreased as the increase of light intensity, whereas it was increased about 1.5% in each plot of LTR by the mulching. 2. Suberranccan temperature under the shading was increased as the increase of light intensity. It was decreased on a hot day by the mulching but increased on a cold day. 3. Soil hardness was decreased by the mulching. 4. Sprouting date of the ginseng plants was acclerated for 7 days and sprout periods were shortened for f days by mulching compared to the non-mulching treatment. 5. Missing plant rate was increased severely as the increase of light intensity more Than 20% LTR In the non-mulching plots but did not severe in the mulching plots. Missing plant rate was decreased remarkably by the mulching. The degree of decrease was larger as the increase 6f light intensity. 6. Root yield was increased in the mulching plots compared to the non$.$mulching plots. The degree of increase was larger as the increase of light intensity. The highest yield was obtained at 20% LTR with mulching.

  • PDF

Effects of Soil Moisture and Chemical Application on Low Temperature Stress of Cucumber (Cucumis sativus L.) Seedling (토양수분조건 및 화학물질처리가 오이묘의 저온장해에 미치는 영향)

  • Nam, Yooun-Il;Woo, Young-Hoe;Lee, Kwan-Ho
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.377-384
    • /
    • 2006
  • This study was conducted to investigate the effects of chemical application and amout of soil moisture on low temperature stress of cucumber seedling under the greenhouse conditions. When chilling treatments ($2^{\circ}C$) were begun at 07:00AM, survival rates of seedlings of two conditions; -0.3 bar and -5.5 bar were 28.3% and 83.3% respectively. But when chilling treatments were begun at 6:00PM - even the soil moisture condition was -0.3 bar - the survival rate was above the 87%. When reducing the soil moisture from -0.3 bar to -9.0 bar, ABA content in leaf was inc.eased by 6.5fo1d. Spraying of abscisc acid (ABA) before or after the chilling significantly increased the survival rates of seedlings, decreased the amounts of leaking electrolytes and prevented the yield reductions. ABA application on the soil before the chilling appeared to be more effective than the application after the chilling with foliar spray. Spraying of ABA ($10^{-5}M$), urea (0.2%) or $KH_2PO_4$ was effective in counteracting the low temperature, which causes growth deterioration and yield reduction in cucumbers.

Engineering properties of expansive soil treated with polypropylene fibers

  • Ali, Muhammad;Aziz, Mubashir;Hamza, Muhammad;Madni, Muhammad Faizan
    • Geomechanics and Engineering
    • /
    • v.22 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Expansive soils are renowned for their swelling-shrinkage property and these volumetric changes resultantly cause huge damage to civil infrastructures. Likewise, subgrades consisting of expansive soils instigate serviceability failures in pavements across various regions of Pakistan and worldwide. This study presents the use of polypropylene fibers to improve the engineering properties of a local swelling soil. The moisture-density relationship, unconfined compressive strength (UCS) and elastic modulus (E50), California bearing ratio (CBR) and one-dimensional consolidation behavior of the soil treated with 0, 0.2, 0.4, 0.6 and 0.8% fibers have been investigated in this study. It is found that the maximum dry density of reinforced soil slightly decreased by 2.8% due to replacement of heavier soil particles by light-weight fibers and the optimum moisture content remained almost unaffected due to non-absorbent nature of the fibers. A significant improvement has been observed in UCS (an increase of 279%), E50 (an increase of 113.6%) and CBR value (an increase of 94.4% under unsoaked and an increase of 55.6% under soaked conditions) of the soil reinforced with 0.4% fibers, thereby providing a better quality subgrade for the construction of pavements on such soils. Free swell and swell pressure of the soil also significantly reduced (94.4% and 87.9%, respectively) with the addition of 0.8% fibers and eventually converting the medium swelling soil to a low swelling class. Similarly, the compression and rebound indices also reduced by 69.9% and 88%, respectively with fiber inclusion of 0.8%. From the experimental evaluations, it emerges that polypropylene fiber has great potential as a low cost and sustainable stabilizing material for widespread swelling soils.

Roller compacted concrete pavements reinforced with steel and polypropylene fibers

  • Madhkhan, Morteza;Azizkhani, Rasool;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.2
    • /
    • pp.149-165
    • /
    • 2011
  • In this paper, the effects of both pozzolans and (steel and poly-propylene) fibers on the mechanical properties of roller compacted concrete are studied. Specimens for the experiments were made using a soil-based approach; thus, the Kango's vibration hammer was used for compaction. The tests in the first stage were carried out to determine the optimal moisture requirements for mix designs using cubic $150{\times}150{\times}150$ mm specimens. In the tests of the second stage, the mechanical behaviors of the main specimens made using the optimal moisture obtained in the previous stage were evaluated using 28, 90, and 210 day cubic specimens. The mechanical properties of RCC pavements were evaluated using a soil-based compaction method and the optimum moisture content obtained from the pertaining experiments, and by adding different percentages of Iranian pozzolans as well as different amounts of steel fibers, each one accompanied by 0.1% of poly-propylene fibers. Using pozzolans, maximum increase in compressive strength was observed to occur between 28 and 90 days of age, rupture modulus was found to decrease, but toughness indices did not change considerably. The influence of steel fibers on compressive strength was often more significant than that of PP fibers, but neither steel nor PP fibers did contribute to increase in the rupture modulus independently. Also, the toughness indices increased when steel fibers were used.

Studies on the Drying Mechanism of Stratified Soil-Comparison between Bare Surface and Grass plot- (성층토양의 건조기구에 관한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.1
    • /
    • pp.2913-2924
    • /
    • 1973
  • This study was to investigate the drying mechanism of stratified soil by investigating 'effects of the upper soil on moisture loss of the lower soil and vice versa' and at the same time by examining how the drying progressed in the stratified soils with bare surface and with vegetated surface respectively. There were six plots of the stratified soils with bare surface($A_1- A_6$ plot) and the same other six plots($B_1- B_5$ plot), with vegetated surface(white clover). These six plots were made by permutating two kinds of soils from three kinds of soils; clay loam(CL). Sandy loam(SL). Sand(s). Each layer was leveled by saturating sufficient water. Depth of each plot was 40cm by making each layer 20cm deep and its area. $90{\times}90(cm^2)$. The cell was put at the point of the central and mid-depth of the each layer in the each plot in order to measure the soil moisture by using OHMMETER. soil moisture tester, and movement of soil water from out sides was cut off by putting the vinyl on the four sides. The results obtained were as follow; 1. Drying progressed from the surface layer to the lower layer regardless of plots. There was a tendency thet drying of the upper soil was faster than that of the lower soil and drying of the plot with vegetated surface was also faster than that of the plot with bare surface. 2. Soil moisture was recovered at approximately the field capacity or moisture equivalent by infiltration in the course of drying, when there was a rainfall. 3. Effects of soil texture of the lower soil on dryness of the upper soil in the stratified soil were explained as follows; a) When the lower soil was S and the upper, CL or SL, dryness of the upper soils overlying the lower soil of S was much faster than that overlying the lower soil of SL or CL, because sandy soil, having the small field capacity value and playing a part of the layer cutting off to some extent capillary water supply. Drying of SL was remarkably faster than that of CL in the upper soil. b) When the lower soil was SL and the upper S or CL, drying of the upper soil was the slowest because of the lower SL, having a comparatively large field capacity value. Drying of CL tended to be faster than that of S in the upper soil. c) When the lower soil was CL and the upper S or SL, drying of the upper soil was relatively fast because of the lower CL, having the largest field capacity value but the slowest capillary conductivity. Drying of SL tended to be faster than that of S in the upper soil. 4. According to a change in soil moisture content of the upper soil and the lower soil during a day there was a tendency that soil moisture contents of CL and SL in the upper soil were decreased to its minimum value but that of S increased to its maximum value, during 3 hours between 12.00 and 15.00. There was another tendency that soil moisture contents of CL, SL and S in the lower soil were all slightly decreased by temperature rising and those in a cloudy day were smaller than those in a clear day. 5. The ratio of the accumulated soil moisture consumption to the accumulated guage evaporation in the plot with vegetated surface was generally larger than that in the plot with bare surface. The ratio tended to decrease in the course of time, and also there was a tendency that it mainly depended on the texture of the upper soil at the first period and the texture of the lower soil at the last period. 6. A change in the ratio of the accumulated soil moisture consumption was larger in the lower soil of SL than in the lower soil of S. when the upper soil was CL and the lower, SL and S. The ratio showed the biggest figure among any other plots, and the ratio in the lower soil plot of CL indicated sligtly bigger than that in the lower soil plot of S, when the upper soil was SL and the lower, CL and S. The ratio showed less figure than that of two cases above mentioned, when the upper soil was S and the lower CL and SL and that in the lower soil plot of CL indicated a less ratio than that in the lower soil plot of SL. As a result of this experiments, the various soil layers wero arranged in the following order with regard to the ratio of the accumulated soil moisture consumption: SL/CL>SL/S>CL/SL>CL/S$\fallingdotseq$S/SL>S/CL.

  • PDF