• Title/Summary/Keyword: Soil Models

Search Result 1,089, Processing Time 0.025 seconds

Standardization of KoFlux Eddy-Covariance Data Processing (KoFlux 에디 공분산 자료 처리의 표준화)

  • Hong, Jin-Kyu;Kwon, Hyo-Jung;Lim, Jong-Hwan;Byun, Young-Hwa;Lee, Jo-Han;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.1
    • /
    • pp.19-26
    • /
    • 2009
  • The standardization of eddy-covariance data processing is essential for the analysis and synthesis of vast amount of data being accumulated through continuous observations in various flux measurement networks. End users eventually benefit from the open and transparent standardization protocol by clear understanding of final products such as evapotranspiration and gross primary productivity. In this paper, we briefly introduced KoFlux efforts to standardize data processing methodologies and then estimated uncertainties of surface fluxes due to different processing methods. Based on our scrutiny of the data observed at Gwangneung KoFlux site, net ecosystem exchange and ecosystem respiration were sensitive to the selection of different processing methods. Gross primary production, however, was consistent within errors due to cancellation of the differences in NEE and Re, emphasizing that independent observation of ecosystem respiration is required for accurate estimates of carbon exchange. Nocturnal soil evaporation was small and thus the annually integrated evapotranspiration was not sensitive to the selection of different data processing methods. The implementation of such standardized data processing protocol to AsiaFlux will enable the establishment of consistent database for validation of models of carbon cycle, dynamic vegetation, and land-atmosphere interaction at regional scale.

Development of Estimated Equation for Mortality Rates by Forest Type in Korea (우리나라 침엽수 및 활엽수림의 고사율 추정식 개발)

  • Son, Yeong Mo;Jeon, Ju Hyeon;Lee, Sun Jeong;Yim, Jong Su;Kang, Jin Taek
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.450-456
    • /
    • 2017
  • This study was conducted to develop estimated equation for mortality rates (volume of dead trees, %) on coniferous and broad-leaved forests, representative forest types of South Korea. There were 6 equation models applied for estimating mortality such as a exponential equation, a Hamilton equation and variables using were DBH, basal area, and site index. Raw data used for estimating mortality were $5^{th}$ and $6^{th}$ national forest inventory data, and mortality was calculated with the difference of stocks between lived trees and dead trees by each sample plots. The most applicable equation to describe mortality on coniferous forest and broad-leaved forest was indicated as $P=(1+e^{(a+b{\times}DBH+c{\times}BA+d{\times}no\_ha+e{\times}density)})^{-1}$ and their goodness of fit showed 34% and 51% respectively. Goodness of fit in both equations were not much high because there were various factors which affect the mortality such as topographic conditions, soil characteristic, climatic factors, site quality, and competition. Therefore, it is considered that explaining mortality in forest with only 2 or 3 variables like DBH, basal area used in this analysis could be very difficult facts. However, this study is certainly worth in that there is no useful information on mortality by each forest type throughout the country at the present, and we would make an effort to promote the fitness of estimated equation for mortality adding competition index, tree crown density etc.

Limitation of Natural Analogue Studies on Rock Matrix Diffusion (기질내에서의 확산작용에 관한 자연유사연구의 한계)

  • Kim, Chang-Lak;Chang, Ho-Wan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.2
    • /
    • pp.100-104
    • /
    • 1994
  • The rock matrix diffusion provides a retarding mechanism for sorbing and especially non-sorbing radionuclides. It has to be verified not only theoretically and experimentally but also from natural phenomena, before the mechanism can be incorporated fully into transport codes. The natural analogue studies, such as the concentration variation of radionuclides in profiles perpendicular to fluid-conducting fractures and to intrusive contact zones, have been believed to provide a validation. In thermal alteration zones of Naeduckri granite intruded by a pegmatite, large alkali and alkaline earth elements such as K, Rb, Sr, and Ba were moderately migrated during thermal alteration. Li, V. and Nb were also migrated about 9cm in width from the contact between the granite and the pegmatite. The concentration variation of these elements in thermally altered zones seems to be resulted from the local migration due to the re-equilibration among the elements released from the breakdown of primary minerals in the granite. Most of these natural analogue studies simply show only the concentration variation of elements without detailed informations on the diffusion time and other important data fir interpreting the behaviour of radionuclides, because of the absence of appropriate minerals for age data. Despite this problem, natural analogue studies will be needed for transport models of radionuclides in safety assessment.

  • PDF

Application of Remote Sensing and Geographic Information System in Forest Sector (원격탐사와 지리정보시스템의 산림분야 활용)

  • Lee, Woo-Kyun;Kim, Moonil;Song, Cholho;Lee, Sle-gee;Cha, Sungeun;Kim, GangSun
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.27-42
    • /
    • 2016
  • Forest accounts for almost 64 percents of total land cover in South Korea. For inventorying, monitoring, and managing such large area of forest, application of remote sensing and geographic information system (RS/GIS) technology is essential. On the basis of spectral characteristics of satellite imagery, forest cover and tree species can be classified, and forest cover map can be prepared. Using three dimensional data of LiDAR(Light Detection and Ranging), tree location and tree height can be measured, and biomass and carbon stocks can be also estimated. In addition, many indices can be extracted using reflection characteristics of land cover. For example, the level of vegetation vitality and forest degradation can be analyzed with VI (vegetation Index) and TGSI (Top Grain Soil Index), respectively. Also, pine wilt disease and o ak w ilt d isease c an b e e arly detected and controled through understanding of change in vegetation indices. RS and GIS take an important role in assessing carbon storage in climate change related projects such as A/R CDM, REDD+ as well. In the field of climate change adaptation, impact and vulnerability can be spatio-temporally assessed for national and local level with the help of spatio-temporal data of GIS. Forest growth, tree mortality, land slide, forest fire can be spatio-temporally estimated using the models in which spatio-temporal data of GIS are added as influence variables.

Determination of Nitrogen Content in Rice Tissue Using Near Infrared Spectroscopy

  • Song, Young-Ju;Cho, Seung-Hyun;Nam-Ki, O.H.;Park, Yeong-Geun
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1262-1262
    • /
    • 2001
  • The rice plant is one of the important staple crops in Korea. The high yield with low cost in rice is required the soil fertility and the development of new precise method of fertilizer application by nutritional diagnosis. Now, in Korea, the nitrogen application system for the rice plant is composed of the basal fertilization, fertilization at tillering stage and fertilization at panicle stage, which the nitrogen fertilization at panicle stage amount to about 30 percent in the total amount. Thus, this experiment carried out to the development of the system that can measure the nitrogen content in the rice plant at panicle stage rapidly with the near infrared spectroscopy, and to predict the appropriate quantity of the nitrogen fertilization at panicle stage based on calibration model for test of nitrogen content in rice plant. The samples were collected from 48 varieties in 4 regions which are mainly cultivated in the southern part of Korea. And then, it collected by classifying into the leaf, the whole plant and the stem since 7 days before the nitrogen fertilization at panicle stage. The ranges of the nitrogen contents were 1.6∼4.0%, 1.7∼3.0% and 1.4∼2.7% in the leaf, the whole plant and the stem, respectively. In the calibration models created by each part of the plant under the Multiple Linear Regression(MLR) method, the calibration model for the leaf recorded the relatively high accuracy. The mutual crossing test on unknown samples were carried out using Partial Least Square(PLS) calibration model. That is, the nitrogen content in the stem was tested by calibration model made by the leaf model and that of stem was tested by calibration model made by whole plant sample. When unknown leaf sample was tested by calibration model made by all sample that collected from each part in rice plant such as leaf, stem and whole plant, it recorded the highest accuracy. As a result, to test the nitrogen content in the rice plant at panicle stage, the nitrogen content in the leaf shall be tested by the calibration model composed of the leaf, the stem and the whole plant. In future, to estimated the amount of nitrogen fertilization at panicle stage for rice plant , it will be calculated based on regression model between rice yield and nitrogen content of leaf measured by calibration model made by mixed sample including leaf, stem and whole plant.

  • PDF

Vulnerability Assessment for Forest Ecosystem to Climate Change Based on Spatio-temporal Information (시공간 정보기반 산림 생태계의 기후변화 취약성 평가)

  • Byun, Jung-Yeon;Lee, Woo-Kyun;Choi, Sung-Ho;Oh, Su-Hyun;Yoo, Seong-Jin;Kwon, Tae-Sung;Sung, Joo-Han;Woo, Jae-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.159-169
    • /
    • 2012
  • The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in South Korea using socio-environmental indicators and the results of two vegetation models named as Hydrological and Thermal Analogy Group(HyTAG), and MAPSS-Century 1(MC1). The changing frequency and direction of biome types estimated by HyTAG model was used for quantifying sensitivity and adaptive capacity of forest distribution. Similarly, the variation and changing tendency of net primary production and soil carbon storage estimated by MC1 model was used for quantifying sensitivity and adaptive capacity of forest function. As socio-environmental indicators, many statistical data such as financial autonomy rate and the number of forestry officer was prepared. All indicators were standardized, and then calculated using the vulnerability assessment equation. The period of vulnerability assessment was divided into the past(1971-2000) and the future(2021-2050). To understand what policy has a priority to climate change, distribution maps of each indicators was depicted and the vulnerability results were compared among administrative districts. Evident differences could be found in entire study area. These differences were mostly derived from regionalspecific adaptive capacity. The result and methodology of this study would be helpful for the development of decision-making supporting system and policy making in forest management with respect to climate change.

Prediction of Leachate Migration from Waste Disposal Site to Underground LPG Storage Facility and Review of Contamination Control Method by Numerical Simulations (수치모의를 통한 지하 LPG 저장시설에 인접한 폐기물매립지에서의 침출수이동 예측 및 제어공법 검토)

  • 한일영;서일원;오경택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.51-59
    • /
    • 1996
  • In case waste disposal site is to be constructed close to the underground facilities such as LPG storage cavern which is completely maintained by groundwater pressure, it is generally requested that the possibility on leachate contamination of cavern area be reviewed and the countermeasure, if it is estimated cavern area is severely affected by leachate, be taken into consideration. Prediction was performed and leachate control plan was made using by analytical and the numerical analysis on the leachate migration which is likely to happen at the area between the proposed waste disposal site and the underground LPG storage cavern located at the U petrochemical complex. Analytical solutions were obtained by the conservative mass advection-diffusion equation and the effect of advection and dispersion factor on the leachate migration was reviewed through peclet number calculation and the functional relationship between the factors and leachate transport velocity was established, which leads to enable us to predict the leachate transport velocity without difficulties when different parameters (factors) are used for analytical solution. Numerical solutions were obtained by FEM using AQUA2D which is for the simulation of groundwater flow and contaminant transport. 3-D discrete fracture models were simulated and fracture flow analysis was performed and feasibility study on the water-curtain system was conducted through the fracture connectivity analysis in rock mass. As results of those analyses, it was interpreted that the leachate would trespass on the LPG storage cavern area in 30 years from the proposed wate disposal site and the vertical water-curtain system was effective mathod for the prevention of leachate's migration further into the cavern area.

  • PDF

Geographical Shift of Quality Soybean Production Area in Northern Gyeonggi Province by Year 2100 (경기북부지역 콩 생산에 미치는 지구온난화의 영향)

  • Seo, Hee-Cheol;Kim, Seong-Ki;Lee, Young-Soo;Cho, Young-Cheol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.4
    • /
    • pp.242-249
    • /
    • 2006
  • Potential impacts of the future climate change on crop production can be inferred by crop simulations at a landscape scale, if the climate data may be provided at appropriate spatial scales. Northern Gyunggi Province is one of the few prospective regions in South Korea for growing quality soybeans. Any geographical shift of production areas under the changing climate may influence the current land planning policy in this region. A soybean growth simulation was performed at 342 land units in northern Gyunggi province to test the potential geographical shift of the current production areas for quality soybeans in the near future (form 2011 to 2100). The land units for soybean cultivation were selected by the land use, the soil characteristics, and the minimum arable land area. Daily maximum and minimum temperature, precipitation, the number of rain days and solar radiation were extracted for each land unit from the future digital climate models (DCM, 2011-2040, 2041-2070, 2071-2100). Daily weather data for 30 years were randomly generated for each land unit for each normal year by using a well-known statistical method. They were used to run CROPGRO-Soybean model to simulate the growth, phonology, and yields of 3 cultivars representing different maturity groups grown at 342 land units. According to the model calculations, the warming trend in this region will accelerate the flowering and physiological maturity of all cultivars, resulting in a 7 to 9 days reduction in overall growing season and a 1 to 15% reduction in grain yield of early to medium maturity cultivars. There was a slight increase in grain yield of the late maturing cultivar under the projected climate by 2070, but a decreasing tend was dominant by the year 2100.

Hydrogeological properties around the KURT (KURT 주변지역의 수리지질특성 연구)

  • Lee, Jin-Yong;Kim, Kyung-Su;Park, Kyung-Woo;Han, Woon-Woo
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.121-126
    • /
    • 2010
  • Current technology for radioactive waste disposal facility is operated as part of KURT site characterization in terms of reliability assessment is conducted to expand. In this study, a geological model of KURT surrounding area on the basis of flow characteristics of the site-scale hydrogeological study was about. Distributed in the study area into four boreholes were plotted using the stereo net NS, NW, EW, Low-angle fracture group was able to identify the components of geological models and include top soil layer, belt of weathering, Low-angle fracture zone, fracture zone was divided into. Separated by fracture of the hydraulic test of through the groundwater aquifer that provides the flow hydraulic conductivity and insulation hydraulic affecting the slope of the normal distribution for the size and direction by performing statistical analysis of fracture in the direction of local ns The advantage was confirmed. In addition, Low-angle fracture hydraulic conductivity of the value of 3.61e-07 m/s has a value greater than the major fracture, the fracture zones exist in the base rock and base rock and the hydraulic characteristics of the different methods applied and had to have a different interpretation judged by was.

Sensitivity Analysis for Parameter of Rainfall-Runoff Model During High and Low Water Level Season on Ban River Basin (한강수계의 고수 및 저수기 유출모형 매개변수 민감도 분석)

  • Choo, Tai-Ho;Maeng, Seung-Jin;Ok, Chi-Youl;Song, Ki-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1334-1343
    • /
    • 2008
  • Growing needs for efficient management of water resources urge the joint operation of dams and integrated management of whole basin. As one of the tools for supporting above tasks, this study aims to constitute a hydrologic model that can simulate the streamflow discharges at some control points located both upper and down stream of dams. One of the currently available models is being studied to be applied with a least effort in order to support the ongoing project of KWATER (Korea Water Resources Corporation), "Establishment of integrated operation scheme for the dams in Han River Basin". On this study, following works have been carried out : division of Han River Basin into 24 sub-basins, use of rainfall data of 151 stations to make spatial distribution of rainfall, selection of control points such as Soyanggang Dam, Chungju Dam, Chungju Release Control Dam, Heongseong Dam, Hwachun Dam, Chuncheon Dam, Uiam Dam, Cheongpyung Dam and Paldang Dam, selection of SSARR (Streamflow Synthesis and Reservoir Regulation) model as a hydrologic model, preparation of input data of SSARR model, sensitivity analysis of parameter using hydrologic data of 2002. The sensitivity analysis showed that soil moisture index versus runoff percent (SMI-ROP), baseflow infiltration index versus baseflow percent (BII-BFP) and surface-subsurface separation (S-SS) parameters are higher sensitive parameters to the simulation result.