• Title/Summary/Keyword: Soil Mapping

Search Result 210, Processing Time 0.024 seconds

Development of Electronic Mapping System for N-fertilizer Dosage Using Real-time Soil Organic Matter Sensor (실시간 토양 유기물 센서와 DGPS를 이용한 질소 시비량 지도 작성 시스템 개발)

  • 조성인;최상현;김유용
    • Journal of Biosystems Engineering
    • /
    • v.27 no.3
    • /
    • pp.259-266
    • /
    • 2002
  • It is crucial to know spatial soil variability for precision farming. However, it is time-consuming, and difficult to measure spatial soil properties. Therefore, there are needs fur sensing technology to estimate spatial soil variability, and for electronic mapping technology to store, manipulate and process the sampled data. This research was conducted to develop a real-time soil organic matter sensor and an electronic mapping system. A soil organic matter sensor was developed with a spectrophotometer in the 900∼1,700 nm range. It was designed in a penetrator type to measure reflectance of soil at 15cm depth. The signal was calibrated with organic matter content (OMC) of the soil which was sampled in the field. The OMC was measured by the Walkeley-Black method. The soil OMCs were ranged from 0.07 to 7.96%. Statistical partial least square and principle component regression analyses were used as calibration methods. Coefficient of determination, standard error prediction and bias were 0.85 0.72 and -0.13, respectively. The electronic mapping system was consisted of the soil OMC sensor, a DGPS, a database and a makeshift vehicle. An algorithm was developed to acquire data on sampling position and its OMC and to store the data in the database. Fifty samples in fields were taken to make an N-fertilizer dosage map. Mean absolute error of these data was 0.59. The Kring method was used to interpolate data between sampling nodes. The interpolated data was used to make a soil OMC map. Also an N-fertilizer dosage map was drawn using the soil OMC map. The N-fertilizer dosage was determined by the fertilizing equation recommended by National Institute of Agricultural Science and Technology in Korea. Use of the N-fertilizer dosage map would increase precision fertilization up to 91% compared with conventional fertilization. Therefore, the developed electronic mapping system was feasible to not only precision determination of N-fertilizer dosage, but also reduction of environmental pollution.

Digital mapping of soil carbon stock in Jeolla province using cubist model

  • Park, Seong-Jin;Lee, Chul-Woo;Kim, Seong-Heon;Oh, Taek-Keun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.1097-1107
    • /
    • 2020
  • Assessment of soil carbon stock is essential for climate change mitigation and soil fertility. The digital soil mapping (DSM) is well known as a general technique to estimate the soil carbon stocks and upgrade previous soil maps. The aim of this study is to calculate the soil carbon stock in the top soil layer (0 to 30 cm) in Jeolla Province of South Korea using the DSM technique. To predict spatial carbon stock, we used Cubist, which a data-mining algorithm model base on tree regression. Soil samples (130 in total) were collected from three depths (0 to 10 cm, 10 to 20 cm, 20 to 30 cm) considering spatial distribution in Jeolla Province. These data were randomly divided into two sets for model calibration (70%) and validation (30%). The results showed that clay content, topographic wetness index (TWI), and digital elevation model (DEM) were the most important environmental covariate predictors of soil carbon stock. The predicted average soil carbon density was 3.88 kg·m-2. The R2 value representing the model's performance was 0.6, which was relatively high compared to a previous study. The total soil carbon stocks at a depth of 0 to 30 cm in Jeolla Province were estimated to be about 81 megatons.

A Method for Nonlinear Dynamic Response Analysis of Semi-infinite Foundation Using Mapping (사영에 의한 반무한지반의 비선형해석)

  • Lee Choon-Kil
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.5-10
    • /
    • 2006
  • A special finite difference method for nonlinear dynamic response analysis of semi-infinite foundation soil using mapping which transforms semi-infinite domain into finite domain is presented here. For the region of engineering interest, mapping is isometric, and fur far field, shrink mapping which transforms infinite interval into finite interval is adopted. At first, the responses of semi-infinite foundation soil with linear constituting model are computed, and compared with theoretical results and those of existing method. Good agreements are obtained among the results of the proposed method, Lamb's theory and FEM with extensive mesh model. Then the responses of infinite foundation soil are computed by the present method, using small and large mesh model. The results of small and large mesh models agree well with each other, demonstrating the effectiveness of the proposed method.

Geophysical Applications on the Soil-contamination Mapping and Detection of Buried Mine Tailings in the Abandoned Mine Area (폐광산의 토양오염영역 및 폐기된 광미의 탐지)

  • Lee, Sang Kyu;Hwang, Se Ho;Lee, Tai Sup
    • Economic and Environmental Geology
    • /
    • v.30 no.4
    • /
    • pp.371-377
    • /
    • 1997
  • This paper presents the geophysical applications to the environmenml problem in an abandoned mine area. We would like to focus our attention on the mapping of the soil contamination and the detection of the buried mine tailings. For mapping the soil contamination. measurements of both in-situ magnetic susceptibility (k) and terrain conductivity were carried out. In-situ magnetic susceptibilities of the contaminated soil due to the acid mine drainage show higher values than those of the uncontaminated area. However. those data do not show the correlation with the degree of the soil contamination observed on the surface. The least-squares fitted formula obtained with the measured insitu magnetic susceptibilities is $k=4.8207{\times}W^{0.6332}$, where W is the $Fe^{+2}$ weight percentage. This weight gives most effect to magnetic susceptibility of the soil. Lateral variations of the soil contamination in the shallow subsurface can be detected by the electrical conductivity distributions from EM induction survey. TDIP (Time Domain Induced Polarization) and EM induction surveys were conducted to detect the buried mine tailings. From the results of TDIP, the spatial zone, which shows high chargeability-low resistivity, is interpreted as the buried mine tailings. Therefore, it is concluded that it is possible to discriminate the spatial zone from the uncontaminated ground.

  • PDF

A Study on the Geometrical Features of Soil Doundaries and Mapping Units for Consolidation Works of Arable Land (농경지(農耕地)의 기반조성(基盤造成)을 위한 작도단위(作圖單位) 및 배계(培界)의 기하학적(幾何學的) 형태(形態)에 관한 조사(調査))

  • Yoon, Eul-Soo;Jung, Yeun-Tae;Kim, Jung-Kon;Son, Il-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.1
    • /
    • pp.6-11
    • /
    • 1989
  • This investigation was conducted to get basic informations on land consolidation works and soil management for arable land. The characteristics of geometrical features of mapping units in the detailed soil maps of Korea were measured from 70 soil series (565 soil phases) by using a picture analysis system. The results obtained were as follows: 1. The mean values of the mapping units in extent, periphery, diameter of long axis and short axis, roundness and number of acute angles were 22.0ha, 2.267m, 911m, 0.104, and 3.5, respectively. It was suggested that "Simplicity Index of Mapping Unit", $=\frac{Extent\;in\;ara}{Length\;of\;boundary\;periphery\;in\;meter}{\times}\frac{1}{number\;of\;acute\;angle}$ be valuable to judge the complexity degrees of mapping units. 2. The size of mapping unit among physiographyic position was shown in order of Alluvial plains > Fluviomarine plains > Terraces > Hills > Fans > Mt. foot slopes > Valleys, and the simplicity index of mapping units also showed similar order of the extent. 3. The size and the simplicity index of the soils developed on plains with silty textured imperfectly drained were higher than the soils developed on sloped land with loamy textured. As the slopes getting steeper or relatively better in soil drainage, the size and the simplicity index became smaller. 4. The relationship between the simplicity index and the size of the farm unit divides by the land consolidation works was positively correlated. And it was concluded that the parcelling of the farm unit divides by the planning of land consolidation should be based on the soil boundaries of the detailed soil maps for mechanized or collaborated farming.

  • PDF

Mapping of Quantitative Trait Loci for Yield and Grade Related Traits in Peanut (Arachis hypogaea L.) Using High-Resolution SNP Markers

  • Liang, Yuya;Baring, Michael R.;Septiningsih, Endang M.
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.454-462
    • /
    • 2018
  • Yield and grade are the key factors that affect production value of peanut. The objective of this study was to identify QTLs for pod yield, hundred-seed weight, and total sound mature kernel (TSMK). A total of 90 recombinant inbred lines, derived from Tamrun OL07 and a breeding line Tx964117, were used as a mapping population and planted in Brownfield and Stephenville, Texas. A genetic map was developed using 1,211 SNP markers based on double digest restriction-site associated DNA sequencing (ddRAD-seq). A total of 10 QTLs were identified above the permutation threshold, three for yield, three for hundred-seed weight and four for TSMK, with LOD score values of 3.7 - 6.9 and phenotypic variance explained of 12.2% - 35.9%. Among those, there were several QTLs that were detected in more than one field experiment. The commonly detected QTLs in this study may be used as potential targets for future breeding program to incorporate yield and grade related traits through molecular breeding.

Spatial Pedological Mapping Using a Portable X-Ray Fluorescence Spectrometer at the Tallavera Grove Vineyard, Hunter Valley

  • Jang, Ho-Jun;Minasny, Budiman;Stockmann, Uta;Malone, Brendan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.635-643
    • /
    • 2016
  • Wine consumers desire to drink a high quality wine. For producing high quality wine, high quality soil is required. Conventionally, soil quality is assessed qualitatively. Using traditional laboratory methods, quantitative data can be obtained for management purpose, but it is time consuming and expensive. Therefore, new technology aims to address these limitations, namely portable X-Ray fluorescence spectrometers (pXRF). This instrument can be used directly in the field, requires no soil sample preparations, and can simultaneously measure a wide range of elements qualitatively that are useful for pedological studies. The chemical composition (Ca, Fe, Ti and Zr) of soils at Tallavera Grove vineyard in New South Wales, Australia, was studied using a pXRF. The analysis of the soil's elemental concentration (i.e. Ca and Fe) using pXRF supports management decisions. Measuring the soil's Ca concentration can be used to identify Ca-rich parent materials (limestone). The limestone indicates good soil conditions for vine production. Fe content was used to identify areas of texture-contrast soils or soil with accumulation of clays in the B horizon. In addition, a soil weathering index was calculated using elemental concentrations (i.e. Ti and Zr) to explore the history of soil formation for making decision of management. This index showed that the soil in the vineyard was affected by two processes: the deposition of materials from elsewhere (Aeolian transport or soil erosion) and mixing of materials from upslope.

Estimation of spatial parameters to be included in 3D mapping for long-term forest road management

  • Choi, Sung-Min;Kweon, Hyeongkeun;Lee, Joon-Woo
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.4
    • /
    • pp.727-742
    • /
    • 2020
  • Point cloud-based 3D maps can obtain many kinds of information for maintenance work on forest road networks. This study was conducted to compare the importance of each factor to select the factors required for the mapping of 3D forest road maps. This can be used as basic data for attribute information required to maintain forest road networks. The results of this study found that out of a total of 30 indexes extracted for mapping 3D forest roads, a total of 21 indexes related to stakeholder groups were significantly different. The importance of the index required by the civil service group was significantly higher than that of the other groups overall. In the case of the academic group, the index importance for cut slope, fill slope, and drainage facility was significantly higher. On the other hand, the index importance for the forestry cooperative and forest professional engineer group was mostly distributed between the civil servants' group and the academic group. In particular, the type of drainage system showed the highest value among the detailed indexes. Overall, drainage related factors in this survey had high coefficient values. The impact of water on forest roads was the most important part in road maintenance. In addition, the soil texture had a high value in relation to slope stability. This is thought to be because the texture of the soil affects the stability of the slope.