• Title/Summary/Keyword: Soil Ionization

Search Result 46, Processing Time 0.03 seconds

Analysis of Soil lonization Characteristics in Concentric Cylindrical Electrode System under Impulse Voltages (임펄스전압에 의한 동심원통형 전극계에서 토양 이온화특성 분석)

  • Kim, Hoe-Gu;Park, Geon-Hun;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.32-39
    • /
    • 2008
  • This paper presents the soil ionization phenomena and the parameters with the transient characteristics of model grounding system under lightning impulse voltages. lonization properties of dry and wet sands were investigated by using two test cells of concentric cylindrical electrode system with different dimensions. As a result non-linear electrical behavior of sand under high impulse voltage is caused by ionization process. The transient impedance of sand depends not only on the water content but also on the magnitude of applied impulse voltages. The grounding impedance is decreased with increasing the water content and the magnitude of a lied voltages. The results resented in this paper will provide useful information on the design of high performance grounding systems against lightning surge.

Analysis of soil discharge characteristics in sand with water content (수분 함유량에 따른 모래의 지중방전 특성 분석)

  • Lee, Bok-Hee;kim, Hoe-Gu;Park, Geon-Hun;Lee, Kyu-Sun;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.436-439
    • /
    • 2008
  • It has been known that the value of soil resistance drops when a high impulse curennt is injected into a grounding electrode. In this paper, impulse generator is used to investigate the dry soil and wet soil characteristics in cylinderical test cell. The impulse resistances and breakdown characteristics were discussed based on its voltage and current traces. As a result, sand resistances are decreased with increasing the applied currents. It was thought that a decrease in resistance of dry sand with increasing current is due to both thermal and ionization processes. On the other hand, in case there is no water presence in the soil, the reduction in resistance as the currents are of dry sand increased is mainly due to the ionization process.

  • PDF

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Investigation of Large-scale Transmission Tower Grounding Grid with High Amplitude and Uniform Flowing Impulse Current

  • Yang, Shuai;Huang, Jiarui;Wei, Shaodong;Zhou, Wenjun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2050-2058
    • /
    • 2018
  • Impulse characteristic of transmission tower grounding grid is needed for lightning protection of transmission line. This paper describes an outdoor experimental test facility established for large-scale grounding grid of transmission tower, made up of four impulse current generators and a circle current return electrode. The amplitude of impulse current is up to 100 kA. The results of the CDEGS simulation and GPR measurement reveal the uniform current distribution in the test arrangement. An impulse test for a square electrode with extended conductors is carried out in condition of three current waveforms with different amplitude. Based on the electrical network model and iterative algorithm method, a calculation model is proposed to simulate the impulse characteristic of large-scale grounding grid considering soil ionization. The curve of impulse resistance against the current amplitude shows the soil ionization both from the simulation and test. Deviation between the simulation and test result is less than 15%.

Potential Reduction and Energy Dispersion Due to Ionization Around the Submerged Ground Rod (수중에 잠긴 접지전극 주변에서의 이온화에 의한 전위저감 및 에너지방출)

  • Choi, Jong-Hyuk;Ahn, Sang-Duk;Yang, Soon-Man;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2009
  • Deeply-driven ground rod in the rainy season may contact with rainwater and ground water. When surge voltages are applied to the submerged ground rods, the ionization around the ground rods are occurred. Ionization in soil and/or water is affected in dynamic performance of ground rod systems. This work aims at studying the transient performance of ground rod system under impulse voltage using scale model in an electrolytic tank. The potential reduction and energy dispersion caused by ionization were treasured and quantitatively analyzed using the Matlab Program. As a result, the peak voltage at the terminal of ground rod was varied with water resistivity and charging voltage of Marx generator. The potential at the terminal of the ground rod was approximately reduced to a half of the applied voltage just below breakdown voltage. Also the energy more than half of the applied energy was dispersed through the ground rod due to ionization just below breakdown voltage.

Soil Discharge Characteristics in Inhomogeneous Field Caused by Lightning Impulse Voltages (뇌임펄스전압에 의한 불평등전계에서 토양방전특성)

  • Yoo, Yang-Woo;Kim, Seung-Min;Kim, You-Ha;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.95-101
    • /
    • 2015
  • This paper presents experimental results about characteristics of soil discharge as a function of moisture content when the $1.2/50{\mu}s$ lightning impulse voltage is applied. The laboratory experiments, for this study, were carried out based on factors affecting the transient behavior in soils. The electrical breakdown in soils was measured over a 0-6% range of moisture content for sands and a 0-4% range of moisture content for gravels. Needle-plane electrode systems was used As a result, the conduction current prior to ionization growth in dry soil is a little, but it in wet soil is increased with the applied voltage because the wet soil particles act as conductors. The soil impedance curves show an abrupt reduction just after breakdown. The general tendency measured in different soils is that the higher the water content, the lower the breakdown voltage and the shorter the time-lag to breakdown.

Transient Ground Impedance of Small-sized Ground Electrode considering Underground Discharge in Frozen Soil (동결 토양에서 지중방전을 고려한 소규모 전극의 과도접지임피던스 특성)

  • Lee, Tae-Hyung;Cho, Sung-Chul;Eom, Ju-Hong;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.324-327
    • /
    • 2009
  • This paper presents the transient impedance in a discharge region when high voltage lightning impulse is applied to small-sized ground electrodes in frozen soil. For a realistic analysis of ionization characteristics near the ground electrode in the soil, ground rod installed outdoors and high voltage impulse voltage generator were used. From the analysis of response voltage and current flowing ground electrode to earth, it was verified that the ionization near the ground electrode contributes to reduction of ground impedance and limits the ground potential rise effectively under high impulse voltage.

  • PDF

Discharge Characteristics in Soils Subjected to Lightning Impulse Voltages

  • Kim, Seung Min;Yoo, Yang-Woo;Lee, Bok-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.446-454
    • /
    • 2016
  • In this paper, we present experimental results of the soil discharge characteristics as a function of moisture content when a 1.2/50-㎲ lightning impulse voltage is applied. For this study, laboratory experiments were carried out based on factors affecting the transient behavior in soils. The electrical breakdown voltages in soils were measured for a 0-6% range of moisture content for sand and a 0 - 4% range of moisture content for gravel. A test cell with semi-spherical electrodes buried face-to-face in the middle of a cylindrical container was used. The distance separating the electrodes is 100 mm. As a result, the time-lag to breakdown in soils decreases as the amplitude of applied voltage increases. The time-lag to initiation of ionization streamer is decreased, with an increase in the moisture content. However, the formative time-lag is rarely changed. The behavior of soil discharges depend not only on the type of soil and its moisture content but also on the amplitude of the impulse voltage. When the test voltage is applied repeatedly, electrical breakdown occurs along different discrete paths, leading radially away from the injected electrode. i.e., the fact that the ionization streamers propagate in different paths from shot to shot was observed.

Evaluation of the potential reduction and energy dispersion caused by ionization phenomena at the submerged ground rod (수중에 잠긴 접지전극주변에서 이온화에 의한 전위저감 및 에너지 방출의 평가)

  • An, Sang-Duk;Choi, Jong-Hyuk;Park, Geon-Hun;Yang, Soon-Man;Lee, Bok-Hee;Ahn, Chang-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.337-340
    • /
    • 2008
  • When high surge voltage invaded into the ground rod contacted with ground water, the ionization phenomena are happened in the water. Although some researchers have surveyed the ionization phenomena in soil, they have just analyzed the variation of the ground resistance. The most important role of the ground rod is to elect human beings from potential rise and to dissipate energy to the earth safely. In this wort we presented the method evaluating the potential reduction and energy dispersion. Also we analyzed theses factors as a function of charging voltages at the water resistivity of $50\;{\Omega}{\cdot}m$ using the Matlab Program. As a result the ground rod potential was reduced to 38 kV by ionization just below breakdown voltage. The energy more than half of the total injected energy was dispersed through the grounding electrode caused due to ionization.

  • PDF

Theoretical Analysis for Determination of Effective Length of Vertically-Driven Ground Rod (수직매설 접지전극의 유효길이 산정에 대한 이론적 해석)

  • Lee, Bok-Hee;Kim, Jung-Cheol;Kim, Jong-Ho;Yoo, Jae-Duk;Kim, Dong-Kyu;Lee, Su-Bong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.63-66
    • /
    • 2009
  • Lighting currents are one of major influences on the dynamic performance of ground electrodes. High lighting current intensity changes in the dynamic grounding performance due to ionization of the soil and very fast fronted pulses. The previous analysis has often been based on quasi-static approximation that is not applicable to very fast fronted pulses. To extend the analysis to fast fronted pulses in this paper, the full-wave analysis method based in the rigorous electromagnetic-field theory approach is used and the effects of the ionization of the soil me disregarded. Based on the simulation results, the empirical formulas applicable for slow and very fast fronted lightning current pulses me reviewed; therefore the validity of the theoretical approach is verified through comparison between the calculated and measured results.

  • PDF