• Title/Summary/Keyword: Soil Erosion Factor

Search Result 116, Processing Time 0.029 seconds

Analysis of Soil Erosion Reduction Effect of Rice Straw Mat by the SWAT Model (SWAT 모형을 이용한 볏짚매트의 토양유실 저감효과 분석)

  • Jang, Won-Seok;Park, Youn-Shik;Choi, Joong-Dae;Kim, Jong-Gun;Shin, Min-Hwan;Ryu, Ji-Chul;Kang, Hyun-Woo;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.3
    • /
    • pp.97-104
    • /
    • 2010
  • The purpose of this study is to evaluate sediment yield reduction under various field slope conditions with rice straw mat. The Vegetative Filter Strip Model-W (VFSMOD-W) and Soil and Water Assessment Tool (SWAT) were used for simulation of sediment yield reduction effect of rice straw mat. The Universe Soil Loss Equation Practice factor (USLE P factor), being able to reflect simulation of rice straw mat in the agricultural field, were estimated for each slope with VFSMOD-W and measured soil erosion values under 5, 10, and 20 % slopes. Then with the regression equation for slopes, USLE P factor was derived and used as input data for each Hydrological Response Unit (HRU) in the SWAT model. The SWAT Spatially Distributed-HRU (SD-HRU) pre-processor module was utilized, moreover, in order to consider spatial location and topographic features (measured topographic features by field survey) of all HRU within each subwatershed in the study watershed. Result of monthly sediment yield without rice straw mat (Jan. 2000 - Aug. 2007) was 814.72 ton/month, and with rice straw mat (Jan. 2000 - Aug. 2007) was 526.75 ton/month, which was reduced as 35.35 % compared without it. Also, during the rainy season (from Jun. to Sep. 2000 - 2007), when without vs. with rice straw mat, monthly sediment indicated 2,109.54 ton and 1,358.61 ton respectively. It showed about 35.60 % was reduced depending on rice straw mat. As shown in this study, if rice straw mat is used as a Best Management Practice (BMP) in the sloping fields, rainfall-driven sediment yield will be reduced effectively.

Development of SATEEC R Module using Daily Rainfall Data (일강우를 고려한 SATEEC R모듈 개발)

  • Jang, Chun-Hwa;Ryu, Ji-Chul;Kang, Hyun-Woo;Kum, Dong-Hyuk;Kim, Young-Sug;Park, Hwa-Yong;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.983-990
    • /
    • 2011
  • Universal Soil Loss Equation (USLE) has been used to estimate potential long-term soil erosion in the fields. However, the USLE does not estimate sediment yield due to lack of module considering sediment delivery ratio (SDR) for watershed application. For that reason, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) system was developed and applied to compute the sediment yield at watershed scale. However, the R factor of current SATEEC Ver. 2.1 was estimated based on 5-day antecedent rainfall, it is not related with fundamental concept of R factor. To compute R factor accurately, the energy of rainfall strikes should be considered. In this study, the R module in the SATEEC system was enhanced using formulas of Williams, Foster, Cooley, CREAMS which could consider the energy of rainfall strikes. The enhanced SATEEC system ver. 2.2 was applied to the Imha watershed and monthly sediment yield was estimated. As a result of this study, the $R^2$ and NSE values are 0.591 and 0.573 for calibration period, and 0.927 and 0.911 for validation period, respectively. The results demonstrate the enhanced SATEEC System estimates the sediment yield suitably, and it could be used to establish the detailed environmental policy standard using USLE input dataset at watershed scale.

Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields (고분자유기응집제 (Polyacrylamide)를 활용한 농경지 사면 토양유실 저감 효과 분석)

  • Kim, Minyoung;Choi, Yonghun;Lee, Sangbong;Kim, Hyunjeong;Kim, Seounghee;Kim, Youngjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.123-128
    • /
    • 2015
  • This study conducted a series of field experiments using soil conditioners, Polyacrylamide(PAM) and gypsum, to evaluate their effects in reducing sediment loss and surface runoff. In addition, the correction factors (K-alpha) for the erodibility factor (K) were determined to reflect the effects of PAM and PAM+gypsum in applying the USLE equation. Experimental erosion plots individually sized $10m^2$ (5 m long, 2 m wide and 1 m deep) have different slopes (10, 20 and 30%). Erosion plots were prepared for one control (C; no PAM and gypsum) and two treatments (P; PAM 20 kg/ha, PG; PAM 20 kg/ha+gypsum 3,000 kg/ha). The amounts of soil eroded and runoff were continuously monitored from July $1^{st}$ to Oct. $31^{st}$ in 2010 and compared to each other. The amount of sediment loss from a control plot was 399.2 ton/ha and the relative reduction of sediment loss were 11.4% and 33.4% for PAM-treated and PAM+gypsum treated plots, respectively. This study also determined the K-alpha factors in the USLE equation to account for the erosion control effectiveness of PAM and gypsum application. The K-alpha factors were calculated as 0.92 for PAM-treated plot and 0.69 for PAM+gypsum-treated plot. The findings of this study revealed that soil conditioners (PAM and gypsum) could play a significant role in controlling soil erosion. In addition, the modified USLE equation using the K-alpha could provide valuable information to make better decision on establishment of best management practice for soil erosion control in agriculture.

A Comparative Analysis of Annual Surface Soil Erosion Before and After the River Improvement Project in the Geumgang Basin Using the RUSLE (RUSLE을 활용한 금강 수변지역의 하천정비사업 전·후의 연간 표토침식량 변화 비교분석)

  • Kim, Jeong-Cheol;Choi, Jong-Yun;Lee, Sunmin;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_4
    • /
    • pp.1351-1361
    • /
    • 2019
  • In this study, the annual surface soil erosion amount of before (2007 year) and after (2015 year) the river improvement projects were calculated using RUSLE (Revised Universal Soil Loss Equation) in the Geumgang basin (Daecheong-Dam to Geumgang Estuary-Bank). After the results were classified into five classes, the results were compared and analyzed with the results of the change in the land cover. In order to generate each factor of RUSLE, various spatial information data, such as land cover maps for 2007 and 2015 years, national basic spatial information, soil map, and average annual precipitation data were utilized. The results of the analysis are as follows: 1) annual surface soil erosion in the study area increased the area of class 1 in 2015 years compared to 2007, 2) the area of class 2, 3 and 5 decreased, 3) the area of class 4 increased. It is believed that the average annual amount of surface soil erosion decreased in most areas due to the reduction of annual average precipitation, the formation of ecological parks, the expansion of artificial facilities, and the reduction of illegal farmland.

Development of Soil Moisture Data Assimilation Scheme for Predicting Effective Soil Characteristics Using Remotely Sensed Data (원격탐사자료 기반 유효토양특성 산정을 위한 토양수분자료동화기법 개발)

  • Lee, Taehwa;Kim, Sangwoo;Lee, Sang-Ho;Choi, Kyung-Sook;Shin, Yongchul;Lim, Kyoungjae;Park, Younshik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.21-30
    • /
    • 2018
  • In this study, we developed the Soil Moisture Data Assimilation (SMDA) scheme to extract Effective Soil Characteristics-ESC (Sand, Silt, Clay %) from MODerate resolution Imaging Spectroradiometer (MODIS) products. The SMDA scheme was applied to the MODIS-based Soil Moisture (SM) data during the summer (July to September) period. Then the ESC and soil erosion factors (K) were predicted, respectively. Several numerical experiments were conducted to test the performance of SMDA at the study sites under the synthetic and field validation conditions. In the synthetic experiment, the estimated soil moistures values(R: >0.990 and RMSE: <0.005) were identified well with the synthetic observations. The field validation results at the Bangdongri and Chungmicheon sites were also comparable to the TDR-based measurements with the statistics (R: 0.772/0.000 and RMSE: 0.065/0.000). The estimated ESC values were also matched well with the measurements for the synthetic and field validation conditions. Then we tested the SMDA scheme to extract the ESC from the MODIS-based soil moisture products. Although uncertainties exist in the results, the estimated soil moisture and ESC based on the SMDA were comparable to the measurements. Overall, the K factors were similarly distributed based on the derived ESC. Also, the K factors in the mountainous regions were higher than those of the relatively flat areas. Thus, the newly developed SMDA scheme can be useful to estimate spatially and temporally-distributed soil erosion and establish soil erosion management plans.

Application of GIS to the Universal Soil Loss Equation for Quantifying Rainfall Erosion in Forest Watersheds (산림유역의 토양유실량(土壤流失量) 예측을 위한 지리정보(地理情報)시스템의 범용토양유실식(汎用土壤流失式)(USLE)에의 적용)

  • Lee, Kyu Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.83 no.3
    • /
    • pp.322-330
    • /
    • 1994
  • The Universal Soil Loss Equation (USLE) has been widely used to predict long-term soil loss by incorporating several erosion factors, such as rainfall, soil, topography, and vegetation. This study is aimed to introduce the LISLE within geographic information system(GIS) environment. The Kwangneung Experimental Forest located in Kyongki Province was selected for the study area. Initially, twelve years of hourly rainfall records that were collected from 1982 to 1993 were processed to obtain the rainfall factor(R) value for the LISLE calculation. Soil survey map and topographic map of the study area were digitized and subsequent input values(K, L, S factors) were derived. The cover type and management factor (C) values were obtained from the classification of Landsat Thematic Mapper(CM) satellite imagery. All these input values were geographically registered over a common map coordinate with $25{\times}25m^2$ ground resolution. The USLE was calculated for every grid location by selecting necessary input values from the digital base maps. Once the LISLE was calculated, the resultant soil loss values(A) were represented by both numerical values and map format. Using GIS to run the LISLE, it is possible to pent out the exact locations where soil loss potential is high. In addition, this approach can be a very effective tool to monitor possible soil loss hazard under the situations of forest changes, such as conversion of forest lands to other uses, forest road construction, timber harvesting, and forest damages caused by fire, insect, and diseases.

  • PDF

Comparative Analysis by Soil Loss and Sediment Yield Analysis Calculation Method of River using RUSLE and GRID (RUSLE와 GRID를 이용한 하천의 토양유실량 및 유사유출량 산정방법별 비교분석)

  • Park, Eui-Jung;Kim, Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.2
    • /
    • pp.112-121
    • /
    • 2007
  • In occasion of soil loss happened in a basin, soil in the near of a stream may flow into the stream easily, but in case that soil is far away from the stream, sediment yield transferred to rivers by rainfall diminishes. To forecast sediment yield of a stream is an essential item for management of basins and streams. Therefore, sediment yield of soil loss produced from a basin is needed to be calculated as accurate as possible. Purpose of the present research is to calculate soil erosion amount in a basin and to forecast sediment yield flowed into a stream by rainfall and analyze sediment yield in the stream. There are various methods that analyze sediment yield of rivers. In the present study, the soil erosion amount was calculated using Revised Universal Soil Loss Equation(RUSLE) and GRID, and sediment yield was calculated using sediment delivery ratio and empirical methods. DEM data, slope of basin, soil map and landuse constructed by GIS were used for input data of RUSLE. The upstream area of the Yeongsan river basin in Gwangju metropolitan city was selected for the study area. Three methods according to the calculation of LS factor were applied to estimate the soil erosion amount. Two sediment delivery ratio methods for the respective methods were applied and, correspondingly, six occasions in sediment yield were calculated. In addition, the above results were compared by relative amount with estimation by the empirical method of Ministry of Construction & Transportation. Sediment yield calculated in the present study may be utilized for the plan, design and management of dams and channels, and evaluation of disaster impact.

  • PDF

Aggregate Distribution and Wind Erosion in Grass Land of the New Incheon International Airport (인천 신공항 잔디밭 조성지 토양의 입단분포 및 풍식 예측량 산정)

  • Jung, Yeong-Sang;Yoo, Sun-Ho;Choi, Byung-Kwon;Joo, Young-Kyoo;Bang, Jeong-Ho;Park, Chol-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.315-323
    • /
    • 1998
  • Soil aggregate distribution and its relation to wind erosion were examined for the surface soil of the experimental plots for grasses in the New Incheon International Airport, of which soil was reclaimed with sea sands in the Youngjong Island. The soil aggregate with the size between 0.10 and 0.84mm was 74 percents. The 6 percents of the soil aggregates were non-erodible. With this aggregate distribution the wind erodiblity of the soil, I. was $380Mg\;ha^{-1}\;yr^{-1}$ with I value and climatic factor calculated for the dry period from November to May, $45.2Mg\;ha^{-1}\;yr^{-1}$ of the surface soil were estimated to be eroded. The erodible particles with 0.37mm diameter could fly to 17.8, 29.9 and 49.8 meters by saltation at wind speed of 7, 9 and $15m\;s^{-1}$, respectively. The wind erosion could be reduced by increasing vegetation coverage and applying hydrophyllic soil conditioner.

  • PDF

Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea (한국의 경사지 밭의 토양 및 물의 보전 관리 전략)

  • Yang, Jae-E.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.

A Study to Define USLE P Factor from Field Survey in the Four Major Watersheds (현장조사를 통한 4대강 유역의 보전관리인자 산정 연구)

  • Yu, Nayoung;Shin, Minhwan;Seo, Jiyeon;Park, Youn Shik;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.37-44
    • /
    • 2018
  • Universal soil loss equation (USLE) had been employed to estimate potential soil loss since it was developed from the statewide data measured and collected in the United States. The equation had an origin in average annual soil loss estimation though, it was modified or improved to provide better opportunities of soil loss estimation outside the United States. The equation has five factors, most studies modifying them to adapt regional status were focused on rainfall erosivity factor and cover management factor. While the conservation practice factor (USLE P factor) is to represent distinct features in agricultural fields, it is challenging to find studies regarding the factor improvements. Moreover, the factor is typically defined using slopes. The factor defining approach was suggested in the study, the approach is a step-by-step method allowing USLE P factor definition with given condition. The minimum condition is slope and field location to provide an opportunity for using in any GIS software and to reflect regionally distinct features. If watershed location, slope, crop type, and mulching type on furrows are given, detailed definition of the factors are possible. The approach was developed from field survey in South-Korea, it is expected to be used for potential soil loss using USLE in South-Korea.