• Title/Summary/Keyword: Soil Erosion Amount

Search Result 153, Processing Time 0.03 seconds

Research on Construction of Lake dike Using Dredged soil (준설해사를 성토재로 활용한 방수제 단면에 관한 연구)

  • Seo, Dong-Uk;Kim, Hyeon-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.299-307
    • /
    • 2009
  • New lake dike in Saemanguem area is 125km length and require a great amount of fill materials, but it's difficult to get the amount of materials and develop a quarry because of environment conservation. Therefore, the solution is to use the dredged soil in project area as the fill materials not to develop quarry. However, characteristic of dredged soil as a silty fined sand is very weak at seepage, sliding, erosion of dike due to infiltration of rainfall, wind etc. So, lake dike using dredged soil must be constructed safely against the unstable problem of dredged sand. The objective of research is to make safe lake dike using dereged soil on construction of Saemangeum new lake dike. So, we analyzed the characteristic of dredged soil and suggested a standard section of lake dike.

  • PDF

Influences of the devastated forest lands on flood damages (Observed at Chonbo and the neighbouring Mt. Jook-yop area) (황폐임야(荒廢林野)가 수해참상(水害慘狀)에 미치는 영향(影響) (천보산(天寶山)과 인접(隣接) 죽엽산(竹葉山)을 중심(中心)으로))

  • Chung, In Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.5 no.1
    • /
    • pp.4-9
    • /
    • 1966
  • 1. On 13 September 1964 a storm raged for 3 hours and 20 minutes with pounding heavy rainfalls, and precipitation of 287.5 mm was recorded on that day. The numerous landslides were occured in the eroded forest land neighbouring Mt. Chunbo, while no landslides recorde at all on Mt. Jookyup within the premise of Kwangnung Experiment Station, the Forest Experiment Station. 2. Small-scalled Landslides were occured in 43 different places of watershed area (21.97 ha.) in which the survey had already been done, in and around Mt. Chunbo (378 m a.s.l.). The accumulated soil amount totaled $2,146,56m^3$ due to the above mentioned landslides, while soil accumulated from riverside erosion has reached to $24,168.79m^3$, consisting of soils, stones, and pebbles. However, no landslides were reported in the Mt. Jook yup area because of dense forest covers. The ratio of the eroded soil amount accumulated from the riversides to that of watershed area was 1 to 25. On the other hand, the loss and damage in the research area of Mt. Chonbo are as follows: 28 houses completly destroyed or missing 7 houses partially destroyed 51 men were dead 5 missing, and 57 wounded. It was a terrible human disaster However, no human casualties were recorded at all, 1 house-completly destroyed and missing, 2 houses-partially destroyed. Total:3 houses were destroyed or damaged, in The area of Mt. Jookyup 3. In the calculation of the quanty of accumulated soil, the or mula of "V=1/3h ($a+{\sqrt{ab}}+b$)" was used and it showed that 24, 168.79m of soil, sands, stones and pebbles carried away. 4. Average slope of the stream stood 15 at the time of accident and well found that there was a correlation between the 87% of cross-area sufferd valley erosion and the length of eroded valley, after a study on regression and correlation of the length and cross-area. In other works, the soil erosion was and severe as we approached to the down-stream, counting at a place of average ($15^{\circ}1^{\prime}$) and below. We might draw a correlation such as "Y=ax-b" in terms of the length and cross-area of the eroded valley. 5. Sites of char-coal pits were found in the upper part of the desert-like Mt. Chunbo and a professional opinion shows that the mountain was once covered by the oak three species. Furthermore, we found that the soil of both mountains have been kept the same soil system according to a research of the soil cross-area. In other words, we can draw out the fact that, originally, the forest type and soil type of both Mt. Chunbo (378m) and Mt. Jookyup (610m) have been and are the same. However, Mt. Chunbo has been much more devastated than Mt. Jookyup, and carried away its soil nutrition to the extent that the ratios of N. $P_2O_5K_2O$ and Humus C.E.C between these two mountains are 1:10;1:5 respectively. 6. Mt. Chunbo has been mostly eroded for the past 30 years, and it consists of gravels of 2mm or larger size in the upper part of the mountain, while in the lower foot part, the sandy loam was formulated due to the fact that the gluey soil has been carried and accumulated. On the hand, Mt. Jookyup has consitantly kept the all the same forest type and sandy loam of brown colour both in the upper and lower parts. 7. As for the capability of absorbing and saturating maximum humidity by the surface soil, the ratios of wet soil to dry soil are 42.8% in the hill side and lower part of the eroded Mt. Chunbo and 28.5% in the upper part. On the contrary, Mt. Jookyup on which the forest type has not been changed, shows that the ratio in 77.4% in the hill-side and 68.2% in the upper part, approximately twice as much humidity as Mt. Chunbo. This proves the fact that the forest lands with dense forest covers are much more capable of maintaining water by wood, vegitation, and an organic material. The strength of dreventing from carring away surface soil is great due to the vigorous network of the root systems. 8. As mentioned above, the devastated forest land cause not only much greater devastation, but also human loss and property damage. We must bear in mind that the eroded forest land has taken the valuable soil, which is the very existance of origin of both human being and all creatures. As for the prescription for preventing erosion of forest land, the trees for furtilization has to be planted in the hill,side with at least reasonable amount of aertilizer, in order to restore the strength of earth soil, while in the lower part, thorough erosion control and reforestation, and establishments along the riversides have to be made, so as to restore the forest type.

  • PDF

Analysis of Influences of the Solifluction Soil and Stream flow on the Stream Water Quality of Bukhansan National Park (북한산국립공원에서 동결융해침식토사 및 유량이 계류수질에 미치는 영향 분석)

  • Park, Jae Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • This research was conducted to investigate the influences of the solifluction soil and amount of flow on the stream water quality of the Bukhansan National Park from March to october, 2002. The average pH of stream water was higher than that caused by solifluction soil. The average electrical conductivity of upstream water was about 2.1~2.8 times lower than that of downstream water. Linear regression analysis showed that pH and amount of anion($Cl^-$, ${NO_3}^-$, ${SO_4}^{2-}$) of stream water were very significantly correlated with those at the caused by solifluction soil. Structures for erosion control along both sides of stream channel should be designed in order not to influence upon solifluction soil and stream water quality.

Study on Environmental Deteriorations of Trail and Use Impacts in Moaksan Provincial Park (모악산도립공원 등산로의 환경훼손 실태 및 이용영향에 관한 조사연구)

  • 김세천;박종민
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.4
    • /
    • pp.39-50
    • /
    • 1998
  • The object of this study was to examine and analyze the environmental deterioration of three major trails and around peak area of Moaksan Provincial park in 1996. Trails are mostly made up at ridgeline and the slope of them is gentle. Mean trail width is 3.6m, and total length of branch trails is 982m in survey area. The environmental deterioration is derived from trail extension. Maximum eroded depth and cross-section area loss are 89cm and 14,050cm2 respectively, and gully erosion type appears at many sites. The environmental deterioration of trails is very heavy at the sections from Khui to Moaksan peak and from Moakchong to ascent part around the peak. The entire width, branch trail, maximum depth, cross-sectional area loss and surface roughness, as the indexes of trail conditions, are significantly greater at the more heavily used trails. Amount of erosion is influenced by eroded depth, longitudinal slope, runoff influence and entire width in descending order as well as the amount of use. Safety and protection facilities on the trail such as stone and soil stairs, rope handrail, stone channel and soil ditch work are built, but they are very deficient. Bared lands about 4,900m2 and fill slopes are caused and formed by recreation activities and constructions around peak area. It is required to carry the recess system and to conserve and rehabilitate the destroyed trail sites and bare fill slopes as soon as possible, before the environmental deterioration becomes critical because of increased used amount in consequence of construction of recreation parks.

  • PDF

Effect of By-product Gypsum on Soil Erosion at Burned Forest Land (부산물 석고를 이용한 산불피해 지역 토양유실 방지)

  • Kim, Kye-Hoon;Jung, Chang-Wook
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.4
    • /
    • pp.52-59
    • /
    • 2000
  • This study was carried out to find out effect of by-product gypsum on reducing soil erosion at the sloping burned area at Sampo-ri, Gosung-gun in Kangwon-province during the period between June 28 and Sept. 30, 2000. Four experimental plots ($1.2m{\times}10m$) were prepared at the study area with slopes $15^{\circ}{\sim}18^{\circ}$ where forest fire took place twice during last 4 years. Phosphogypsum (PG) was applied to the soils of the 4 plots at the rates of 0 (control), 5, 7.5, and 10 ton/ha, respectively. Amount of rainfall, runoff, and soil loss were measured 7 times during the study. In the beginning, the amounts of runoff and soil loss from the PG treated plots were not different from those from the control plot due to steepness of the plots. However, the difference between the amount of runoff and soil loss from the PG treated plots and those from the control became apparent over time. The effect of PG treatment lasted until at least 870 mm of rainfall. Compared to the cumulative runoff from the control plot, the cumulative runoff from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 7%, 31 %, and 35%, respectively. The cumulative soil loss from the plots treated with 5, 7.5, and 10 ton/ha PG decreased 44%, 53%, and 77% compared to that from the control plot. Strong acidity of PG (pH 2.0~2.5) did not affect the acidity of the soil and runoff.

  • PDF

Effects of Rainfall Events on Soil in Orchard Field under Herbicide Treatment. 2. Characteristics of Runoff and Soil Erosion (제초제 처리 과수원 포장에서 강우 사상의 효과. 2. 유거와 토양침식의 변화)

  • Chung, Doug-Young;Park, Mi-Suk;Lee, Kyu-Seung;Lee, Jin-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.36-43
    • /
    • 2010
  • Changes in runoff and soil erosion at slightly hilly erosive plots with pear trees over a three-year period were monitored under two distinct types of weed treatment by herbides : (1) pre-emergence herbicide with glyphosate; (2) post-emergence herbicide with paraquat. The numbers of rainfall events from June to Nov for three years of experimental periods were approximately 50 times in the plots having 5.5%to 10.2%slope at an altitude of 125 m. The steady-state infiltration rate was generally increased in the bare plot from which all weeds were removed while it was decreased in the herbicide treated plots and control. The runoffs from the control plot during the experimental periods were always less than those from plots of the herbicide-treated and the bare. The runoff under the same rainfall intensity was decreased in the order of bare, glyphosate, paraquat, and control. This results indicated that the removal time of weed by the different types of herbicides might influenced the runoff rate. For the first two years of the experimental periods, loss of fine fraction was much greater than that of coarse fraction while soil loss was correlated neither with total rainfall nor amount of runoff. The soil erosion rate under the same rainfall intensity was increased in the order of control, glyphosate, paraquat, and bare plot. However, there were not much differences in the soil loss for all plots under a relatively lower rainfall intensity less than 30 mm $day^{-1}$, resulting in rainfall intensity was important factor on soil erosion.

Influences of Environmental Factors on Soil Erosion of the Logging Road in Timber Harvested Area (성숙임목벌채지(成熟林木伐採地)에서 운재로(運材路)의 침식(浸蝕)에 미치는 환경요인(環境要因)의 영향(影響))

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Jeong, Do-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.2
    • /
    • pp.239-246
    • /
    • 1995
  • This research aimed at the contribution to obtaining the scientifical data which were required for planning she environmentally sound and sustainable management, particularly in the field of the logging road construction. Main natural environmental variables including natural vegetation, rainfall, soil runoff were measured in the logging road on-sites and analysed. This project was carried out at the (mt.)Paekunsan Research sorest of Seoul National University, located in Gwangyang, Chollanam-do in southern part of Korea, from 1993 to 1994. 1. The explanatory variables for erosion and sedimentation on logging road surface were accumulated rainfall, erosion distance, cross-sectional gradient, and soil hardness. The erosion and sedimentation on logging road was increasing positively in proportion to the accumulated rainfall, soil distance from starting point of the logging road, and cross-sectional gradient. 2. On cut-slope of logging road, cut-slope shape, part of the slope, plant coverage, soil hardness, sand content, accumulated rainfall, clay content, and silt content were effective factors. Cut-slope erosion and sedimentation on logging roam increased as with the lower plant coverage, the lower accumulated rainfall, the high sand content in the soil. 3. On fill-slope of logging road, there were three significant variables such as total rainfall and number of rainfall-storm. Fill-slope erosion and sedimentation had a positive correlation with the amount of rainfall, the number of rainfall, the soil hardness. 4. The total erosion and sedimentation on logging road were $5.04{\times}10^{-2}m^2/m^2$ in logging road construction year, $7.37{\times}10^{-2}m^2/m^2$ in next year. The erosion and sedimentation on logging road surface were 32.7% of total erosion and sedimentation on Logging road in construction year, and 57.1% in next year, respectively. The erosion and sedimentation on cut-slopes were 30.4% on logging road in construction year, fill-slopes of total erosion and sedimentation and 21.0% in next year, respectively. The erosion and sedimentation on fill-slopes were 36.9% on logging road in construction year, 21.9 in next year. To decrease the erosion and sedimentation at the logging road from the beginning stage of construction, the effective revegetation works should be implemented on the cut-slope and fill slopes, and erosion control measures such as optima. road design must be constructed on read surface.

  • PDF

Analysis of Soil Erosion Hazard Zone by R Factor Frequency (빈도별 R인자에 의한 토양침식 위험지역 분석)

  • Kim, Joo-Hun;Oh, Deuk-Keun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.2
    • /
    • pp.47-56
    • /
    • 2004
  • The purpose of this study is to estimate soil loss amount according to the rainfall-runoff erosivity factor frequency and to analyze the hazard zone that has high possibilities of soil erosion in the watershed. RUSLE was used to analyze soil loss quantity. The study area is Gwanchon that is part of Seomjin river basin. To obtain the frequency rainfall-runoff erosivity factor, the daily maximum rainfall data for 39 years was used. The probability rainfall was calculated by using the Normal distribution, Log-normal distribution, Pearson type III distribution, Log-Pearson type III distribution and Extreme-I distribution. Log-Pearson type III was considered to be the most accurate of all, and used to estimate 24 hours probabilistic rainfall, and the rainfall-runoff erosivity factor by frequency was estimated by adapting the Huff distribution ratio. As a result of estimating soil erosion quantity, the average soil quantity shows 12.8 and $68.0ton/ha{\cdot}yr$, respectively from 2 years to 200 years frequency. The distribution of soil loss quantity within a watershed was classified into 4 classes, and the hazard zone that has high possibilities of soil erosion was analyzed on the basis of these 4 classes. The hazard zone represents class IV. The land use area of class IV shows $0.01-5.28km^2$, it ranges 0.02-9.06% of total farming area. Especially, in the case of a frequency of 200 years, the field area occupies 77.1% of total fanning area. Accordingly, it is considered that soil loss can be influenced by land cover and cultivation practices.

  • PDF

Optimal Amount and Mixture Ratio of Seeding of the Exotic and Native Plants for Slope Revegetation(II) (사면 녹화용 외래초종과 재래 목·초본식물의 적정 파종량 및 혼파비에 관한 연구(II))

  • Jeon, Gi-Seong;Woo, Bo-Myeong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.2
    • /
    • pp.43-52
    • /
    • 1999
  • This study was carried out to verify results of the nursery seedbeds. From November of 1997 to September of 1998, the artificial banking slopes in the greenhouse of the College of Agriculture and Life Sciences, Seoul National University were seeded with the mixtures of those species. Most of exotic species showed relatively poor development of root as short as 30cm. Also the green weight of root biomass of the native species was more than two times than that of the exotic species. On the other hand, it was found that the exotic species have relatively well-developed fine roots. Thus, it was concluded that the seed-mixture of the native species with long and thick roots and the exotic species with fine roots be the most effective method for topsoil erosion control on banking-slopes. The artificial rainfall system treatment(30mm/hr, 60mm/hr, 100mm/hr) on $30^{\circ}$ banking-slopes did not cause any significant change in the amount of soil loss by erosion. The root system was best developed in the plot of 1,000 seedlings per square meter and it performed well for soil erosion control. Consequently, in the case of seeding of single herbaceous species without mixing any woody seeds, the expected seedlings were 1,000 to 2,000 per square meter.

  • PDF

Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields (고분자유기응집제 (Polyacrylamide)를 활용한 농경지 사면 토양유실 저감 효과 분석)

  • Kim, Minyoung;Choi, Yonghun;Lee, Sangbong;Kim, Hyunjeong;Kim, Seounghee;Kim, Youngjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.123-128
    • /
    • 2015
  • This study conducted a series of field experiments using soil conditioners, Polyacrylamide(PAM) and gypsum, to evaluate their effects in reducing sediment loss and surface runoff. In addition, the correction factors (K-alpha) for the erodibility factor (K) were determined to reflect the effects of PAM and PAM+gypsum in applying the USLE equation. Experimental erosion plots individually sized $10m^2$ (5 m long, 2 m wide and 1 m deep) have different slopes (10, 20 and 30%). Erosion plots were prepared for one control (C; no PAM and gypsum) and two treatments (P; PAM 20 kg/ha, PG; PAM 20 kg/ha+gypsum 3,000 kg/ha). The amounts of soil eroded and runoff were continuously monitored from July $1^{st}$ to Oct. $31^{st}$ in 2010 and compared to each other. The amount of sediment loss from a control plot was 399.2 ton/ha and the relative reduction of sediment loss were 11.4% and 33.4% for PAM-treated and PAM+gypsum treated plots, respectively. This study also determined the K-alpha factors in the USLE equation to account for the erosion control effectiveness of PAM and gypsum application. The K-alpha factors were calculated as 0.92 for PAM-treated plot and 0.69 for PAM+gypsum-treated plot. The findings of this study revealed that soil conditioners (PAM and gypsum) could play a significant role in controlling soil erosion. In addition, the modified USLE equation using the K-alpha could provide valuable information to make better decision on establishment of best management practice for soil erosion control in agriculture.