• Title/Summary/Keyword: Soil Aluminum content

Search Result 33, Processing Time 0.022 seconds

Effects of Simulated Acid Rain on Growth and Physiological Characteristics of Ginkgo biloba L. Seedlings and on Chemical Properties of the Tested Soil -III. Effects on Chemical Properties of the Tested Soil- (인공산성우(人工酸性雨)가 은행(銀杏)나무 Ginkgo biloba L. 유묘(幼苗)의 생장(生長), 생리적(生理的) 특성(特性) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響) -III. 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響)-)

  • Kim, Gab Tae;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.1
    • /
    • pp.43-52
    • /
    • 1988
  • One-year-old seedlings of Ginkgo biloba were treated with various simulated acid rains(pH 2.0, pH 3.0, pH 9.0 and pH 5.0) to examine the effects of simulated acid rain on the chemical properties of the tested soil. The seedlings were grown in a pot($4500cm^3$)containing one of three different soils(nursery soil, mixed soil and sandy soil). Simulated acid rain was made by diluting sulfuric and nitric acid solution($H^1SO^4$ : $HNO^3$ =3 : 1, V/V) with tap water and tap water(pH 6.4), and treated by 5mm each time for three minutes during the growing seasons(April to October 1985). Acid rain treatments were done three times per week to potted seedlings by spraying the solutions. The chemical properties of potting media were compared among three soil types as well as among the various pH levels. The results obtained in this study were as follows : 1. Exchangeable calcium and magnesium contents and base saturation of the soil decreased with decreasing pH levels of acid rain, and their decreasing rates were as follows : sandy soil was the highest, followed by mixed and nursery soils, However, exchangeable aluminum content rather increased as the pH levels decreased. 2. Available phosphate in the soil decreased as the pH levels of acid rain decreased. Its content increased in nursery soil, compared with those before acid gain treatment, Gut decreased in mined and sandy soils. 3. Soil sulfate and nitrate contents increased remarkably as the pH levels decreased, and the only significant difference in the sulfate was found among the pH levels. Soil sulfate content was the highest in nursery soil, followed by mixed and sandy soils.

  • PDF

Study on Plrene Removal Characteristic From An Artificially Contaminated EPA Synthetic Soil Matrix With Varying Heat Treatment Conditions (Pyrene으로 오염된 EPA토양의 열적처리조건에 따른 오염물질 제거 특성 연구)

  • 김영규;양고수
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.2
    • /
    • pp.55-66
    • /
    • 2000
  • A U.S EPA Synthetic soil matrix was used for reference neat soil and pyrene contaminated soil. For the contaminated soil, 4.79 wt.% pyrene was dissolved completely into the djchlorornethane, and the soil was evenly soaked with the pyrene solution. The contaminated soil samples(50$\pm$0.5mg) were heated in a modified electrical screen heater reactor which consisted of a thin stainless foil (3.5cm$\times$13cm$\times$0.00254cm, 302 stainless steel shim), two electrodes, and a 20cm dia. $\times$30cm tall cylindrical Pyrex chamber sealed at both ends by aluminum flanges. The heating rate and time conditions were selected as $455^{\circ}C$ @ $1137^{\circ}C$ /s, $760^{\circ}C$ @ $950^{\circ}C$ /s and $977^{\circ}C$ @ $977^{\circ}C$/s. Tar samples after heating the soils were collected on the aluminum foil funnel and a glass filter paper (25mm dia. filter paper) The tar sample and remnant soil on the reactor were extracted with dichloromethane covering the filters, foils and soil by sonicating each in the waterbath for 10 minutes. The extractions were run on a HPLC. At the low peak temperature(about $455^{\circ}C$ @ $1137^{\circ}C$/s) the color of tar was "white", at the middle peak temperature (about 76$0^{\circ}C$ @ 95$0^{\circ}C$/s) the color of tar was "pink brown", at the high peak temperature (about 977$^{\circ}C$ @ 977$^{\circ}C$/s) the color of tar was "dark brown". Cyclopeta(cd)pyrene (CPEP) , which is an interesting species due to mutagenic effect on human cells, was detected in tar samples only above the middle peak temperature. This species was not detected at the low peak temperature. Six isomers of bipyrene were detected. Phenanthrene(C$_{14}$ $H_{10}$) and cyclopenta(def)phenanthrene(C$_{15}$ $H_{10}$) were also detected, but their content was very small relative to the other listed compounds.to the other listed compounds.

  • PDF

Ecological Importance of Water Budget and Synergistic Effects of Water Stress of Plants due to Air Pollution and Soil Acidification in Korea (한국에서 수분수지의 생태적 중요성과 대기오염 및 토양 산성화로 인한 식물의 수분스트레스 증대 효과)

  • 이창석;이안나
    • The Korean Journal of Ecology
    • /
    • v.26 no.3
    • /
    • pp.143-150
    • /
    • 2003
  • Korea has plentiful precipitation but rainfall events concentrate on several months of rainy season in her weather condition. Korea, therefore, experiences drought for a given period every year. Moreover the soil has usually low water holding capacity, as it is composed coarse particles originated from the granite. Response of several oaks and the Korean red pine (Pinus densiflora) on water stress showed that water budget was significant factor determining vegetation distribution. In addition, dehydration level due to cold resistance mechanism of several evergreen plants during the winter season was closely related to their distribution in natural condition. Experimental result under water stress showed that the Korean red pine was very tolerant to desiccation but the seedlings showed high mortality during the dry season. The mortality tended to proportionate to soil moisture content of each site. A comparison between soil moisture content during June when it is severe dry season and moisture content of the culture soil when the pine seedlings reached the permanent wilting point due to water withheld proved that high mortality during the dry season was due to water deficit. Water potential of sample plants measured during the exposure experiment to the air pollutant showed a probability that water related factors would dominate the occurrence of visible damage and the tolerance level of sample plants. In both field survey and laboratory experiment, plants exposed to air pollution showed more rapid transpiration than those grown in the unpolluted condition. The result would due to injury of leaf surface by air pollutants. Aluminum (Al/sup 3+/) increased in the acid soil not only inhibits root growth but also leads to abnormal distribution of root system and thereby caused water stress. The water stresses due to air pollution and soil acidification showed a possibility that they play dominating roles in inducing forest decline additionally to the existing water deficit due to weather and soil conditions in Korea. Sludge, which can contribute to improve field capacity, as it is almost composed of organic matter, showed an effect ameliorating the retarded growth of plant in the acidified soil. The effect was not less than that of dolomite known in widely as such a soil ameliorator. Litter extract contributed also to mitigate the water stress due to toxic Al/sup 3+/. We prepared a model showing the potential interaction of multiple stresses, which can cause forest decline in Korea by synthesizing those results. Furthermore, we suggested restoration plans, which can mitigate such forest decline in terms of soil amelioration and vegetation restoration.

Evaluation of Soil Redox Capacity using Chromium Oxidation-reduction Reactions in Volcanic Ash Soils in Jeju Island (크롬산화환원반응을 이용한 제주도 화산회토양 내 토양산화환원능 평가)

  • Chon, Chul-Min;Ahn, Joo-Sung;Kim, Kue-Young;Park, Ki-Hwa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.161-175
    • /
    • 2008
  • The soil developed from volcanic ash in Jeju Island, Korea, were classified as typical Andisols. The soils had acidic pH, high water contents, high organic matters and clay-silty textures. The crystalline minerals of the samples were mainly composed of ferromagnesian minerals such as olivine and pyroxene, and iron oxides such as magnetite and hematite derived from basaltic materials. A large amount of gibbsite was found at the subsurface horizon as a secondary product from the migration of excessive aluminum. In addition, our study has shown that considerable amounts of poorly ordered minerals like allophane and ferrihydrite were present in Jeju soils. The contents of $SiO_2$ were lower than those of other soil orders, but $A1_2O_3$ and $Fe_2O_3$ contents were higher. These results are some of the important chemical properties of Andisols. The contents of heavy metals were in the range of $84{\sim}198$ for Zn, $56{\sim}414$ for Ni, $38{\sim}150$ for Co, $132{\sim}1164\;mg\;kg^{-1}$ for Cr, which are higher than the worldwide values in most of the soils. Some soil samples contained relatively high levels of Cr exceeding 1000 mg/kg. Mean reduction capacity of the Jeju soils was $6.53\;mg\;L^{-1}$ reduced Cr(VI), 5.1 times higher than that of the non-volcanic ash soils from inland of Korea. The soil reduction capacity of the inland soils had a good correlation with total carbon content (R = 0.90). However, in spite of 20 times higher total carbon contents in the Jeju soils, there was a week negative correlation between the reduction capacity and the carbon content (R = -0.469), suggesting that the reduction capacity of Jeju soils is not mainly controlled by the carbon content and affected by other soil properties. Correlations of the reduction capacity with major elements showed that Al and Fe were closely connected with the reduction capacity in Jeju soil (R = 0.793; R = 0.626 respectively). Moreover, the amounts of Ni, Co and Cr had considerable correlations with the reduction capacity (R = 0.538; R = 0.647; R = 0.468 respectively). In particular, in relation to the behavior of redox-sensitive Cr, the oxidation of the trivalent chromium to mobile and toxic hexavalent chromium can be restricted by the high reduction capacity in Jeju soil. The factors controlling the reduction capacity in Jeju soils may have a close relation with the andic soil properties explained by the presence of considerable allophane and ferrihydrite in the soils.

The Clay Mineralogy of some Low Productive Paddy Soils In Kyonggi-Do (경기도(京畿道) 저위생산답(低位生産畓)의 점토광물(粘土鑛物)에 관(關)한 연구(硏究))

  • Shim, Sang Chil;Kim, Tai Soon;Lee, Hyung Koo;Song, Ki Joon;Valencia, I.G.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.127-135
    • /
    • 1974
  • The samples were taken from the following localities previously classified as "Akiochi" area: Yangpyung, Puchun, and Pyungtaik, all of Kyonggi-do province. Five soil profiles were described in the field, and taken to the laboratory for physical and chemical analysis and mineralogical analysis by X-ray diffraction. The predominant clay minerals consist mainly of illite, vermiculite, chlorites and intergrade with vermiculite, and kaolinite. Illite or mica was found present in all samples and in all horizons. This was identified by the 9.83 to $10{\AA}$ (0.01) and $3.32{\AA}$ (003) basal reflections, Interhorizontal variations in mineral content and crystallinity are illustrated in their respective Xray diffractogram. Comparing the peak intensity, of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ indicated the degree of weathering from the surface to the lower horizons. In general, the weathering of illite on the surface produced less pronounced $10{\AA}$ and $14{\AA}$ peak as compared to the lower horizons. The same may be said with kaolinite. On K-saturation, the $14{\AA}$ peak broadening on the low angle side was observed. This is interpreted to be due to chlorization. Heat treament from $100^{\circ}C$, $200^{\circ}C$, $400^{\circ}C$, $600^{\circ}C$, and $800^{\circ}C$. caused significant changes in the different diffractograms. Heating caused collasped of the $14{\AA}$ to $10{\AA}$ and the appearance of scattered peaks between $10-14{\AA}$. This is interpreted to the presence of vermiculite chlorite intergradient. The complete collapse of the $14{\AA}$ at $800^{\circ}C$ to $10{\AA}$ with increased intensity was attributed to the preservce of vermiculite. The principal difference among the clay minerals in each horizon is the concomitant increase and decrease in intensity with depth of the $14{\AA}$, $10{\AA}$ and $7{\AA}$ diffraction spacings. Apparently the weathering of illite ($10{\AA}$) is resulting in the formation of vermiculite ($14{\AA}$) and the interstratified material being an intermediate stage and the beginning of the formation of vermiculite. Some broadening- in the 17 to $18{\AA}$ was observed in Puchun-1 Pyungtaik-1 and Pyungtaik-2 specially so in the lower horizon in the Ca or Mg-saturated sample. Heated treatment tend to shift this peak to $14{\AA}$ indicating the presence of regular layering of the interstratified complex. The high amount of extractable aluminum and iron coupled with low exchange capacity indicate that iron and aluminum plays an important role in the weathering of these soils and is responsible to the low exchange capacity, high acidity and high phosphate absorptive capacity. The results presented substantiated the weathering sequence of Jackson in that mica ${\rightarrow}$ vermiculite ${\rightarrow}$ chloritezed vermiculite ${\rightarrow}$ kaolinite.

  • PDF

Effects of Simulated Acid Rain on Growth and Contents of Chemical Substances in Needles of Pinus koraiensis Seedlings and on Chemical Properties of the Tested Soil (인공산성우(人工酸性雨)가 잣나무 유묘(幼苗)의 생장(生長), 엽내함유성분(葉內含有成分) 및 토양(土壤)의 화학적(化學的) 성질(性質)에 미치는 영향(影響))

  • Cheong, Yong Moon
    • Journal of Korean Society of Forest Science
    • /
    • v.76 no.1
    • /
    • pp.33-40
    • /
    • 1987
  • Simulated acid rain (pH 4.0, pH 2.0) containing sulfuric and nitric acid in the ratio of 60:40 (chemical equivalent basis) diluted with underground water, and underground water (pH 6.5) as control were treated on potted Pines koraiensis seeds during the growing season (May 1 to August 31) in 1985. The regime of artificial acid rain, in terms of spray frequency and amount per plot, was simulated on the basis of climatological data averaged for 30 years of records. The seedling growth, contents of chemical substances in needles and chemical properties of the tested soil were compared among the various pH levels of acid rain on October 31, 1985. Following results were obtained. 1. With decreasing pH levels of acid rain, S and $K_2O$ contents in leaf tissue were increased, but MgO and $P_2O_5$ contents were decreased. 2. Soil pH was dropped, and exchangeable aluminum content in the tested soil was dramatically increased as the pH levels of acid rain decreased. 3. Exchangeable calcium, magnesium, potassium contents, and base saturation degree of the soil were significantly decreased with decreasing pH levels of acid rain. 4. Sulfate concentrations in the soil were significantly increased as rain pH decreased, but total nitrogen and available phosphate contents were not influenced by acid rain.

  • PDF

Langmuir phosphorus adsorption maximum as a criterion for determination of rate of phosphorus application (인산시용량(燐酸施用量) 결정기준(決定基準)으로서의 최대인산흡착량(最大燐酸吸着量))

  • Ryu, In-Soo;Jo, In-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.2
    • /
    • pp.93-97
    • /
    • 1977
  • A pot experiment was conducted to find out suitable method in determining the rate of phosphorus application. Soybean was planted under optimum moisture condition. The soils used in this experiment were cultivated and non-cultivated mineral soils, and volcanic ash soils. The results were summarized as follows: 1. Phosphorus adsorption maximum(PAM) was the good parameters to determine phosphorus adsorption capacity of all tested soils. 2. Phosporus adsorption maximum was increased with the content of ammonium acetate extractable aluminum, and the organic matter effects on PAM was considerably high in volcanic ash soils. 3. Requirement of phosphorus for maximum yields were in the range of 30~35% of PAM for tested soils. 4. PAM was considered as a suitable criteria to determine the rate of the phosphorus application and it was also considered to be more attractive than phosphorus absorption coefficient.

  • PDF

Effects of Air Pollution and Acid Precipitation on Soil pH and Distribution of Elements in Forest Ecosystem (대기오염(大氣汚染) 및 산성우(酸性雨)가 삼림생태계(森林生態系)의 토양산도(土壤酸度) 및 양료분포(養料分布)에 미치는 영향(影響))

  • Lee, Soo Wook;Min, Ill Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.78 no.1
    • /
    • pp.11-25
    • /
    • 1989
  • Four regions have been selected and surveyed to investigate the effects of air pollution and acid deposition on forest ecosystem. They were Seoul as urban region, Yeochon and Ulsan as industrialized region, and Kangwondo as uncontaminated region. Soil pH and the distribution of elements were analyzed in process of time for three years as well as by distance from pollution sources. In general, forest soils acidified in process of time from pollution sources to suburban areas. Hydrogen ion concentration in forest soils increased in 1988 as much as 60% of that in previous year. Average soil pH values in coniferous forest were 4.45 in Seoul, 4.54 in Yeochon, 4.81 in Ulsan, and 6.03 in Kangwondo. Forest soil pH increased with the distance from pollution sources to suburban areas at constant rate within short ranges (up to 30 km) and at decreasing rate within long ranges (up to 200 km). On the contrary, sulfur content in soils decreased every year except in Yeochon region. Base saturation of forest soils in polluted regions were all below 20% level compared with 70% in Kangwondo region. Active aluminum content in soils increased with the soil acidification at the highest rate in Yeochon, and the next in Ulsan and Seoul. Heavy metal content such as copper and zinc in tree tissues were the lowest in Kangwondo region, and the next in Yeochon, Seoul and Ulsan.

  • PDF

Studies on ammonium adsorption by and desorption from various soils (I) -Langmuir adsorption isotherm of ammonium (토양별(土壤別) 암모늄의 흡착(吸着) 및 탈착(脫着)에 관(關)한 연구(硏究) (I) -암모늄의 Langmuir 등온흡착(等溫吸着))

  • Shim, Sang-Chil;Kim, Kwang-Rai;Kim, Moo-Sung;Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 1977
  • Fifteen soils including volcanic ash, acid sulfate and degraded saline soils were investigated for Languir adsorption isotherm of ammonium using $NH_4H_2PO_4$. The results are as follows. Languir adsorption maxima of ammonium (LAMA) ranged from 2.4me/100g soil to 12.3 and the average was 5.3. Initial concentration of 30 to 60 or 40 to 80 ppm(as N) appears to be suitable for LAMA measurement. There were two LAMA in some soils. Difference between adsorption constants (bonding energy) was mostly greater than that between LAMA. LAMA ranged from 9.4% to 72% of cation exchange capacity and average was 47%. It did not show any clear tendency with CEC, pH, organic matter content, base saturation percent, P, K, Ca, Mg, Na and Si. Except volcanic ash soils which were grouped into two groups according to ammonium adsorption LAMA was significantly (r=0.951 at 1%) correlated with adsorption at 200ppm. This single concentration seems suitable for LAMA measurement. Probable mechanism of ammonium adsorption was discussed, in which the associated anions were combined with iron and aluminum and then ammonium was bound to phosphorus. Applicability of Langmuir adsorption isotherm model to the soils under field condition was also discussed.

  • PDF

A study on determination of the lime requirement based on exchangeable aluminum content (치환성(置換性) Al 함량(含量)에 따른 석탄소요량(石炭所要量) 결정(決定)에 관(關)한 연구(硏究))

  • Ryu, In Soo;Cho, Seong Jin;Yuk, Chang Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.7 no.3
    • /
    • pp.185-191
    • /
    • 1974
  • Incubation and pot studies were conducted with upland soils for a study on determination of the lime requirement based on exchangeable alumium content. The results obtained are as follows; 1. Results of chemical analysis of upland soils show that pH varies from 5.0 to 5.4, and exchangeable Al moves with the range of 1.3-3.0m.e/100gr. Exchangeable Al decreases with years of cultivation. 2. Incubation studies shows that on acid mineral soils almost all exchangeable Al, on average 95% was neutralized with the lime to neutralized 100% exchangeable Al. On volcanic ash soil, however, only 65.5% was neutralized with the lime estimated to neutralize the equivalent of 200% exchangeable Al. The latter has required more lime. 3. The pH of mineral soils is on the average increased from an initial 5.2 to 6.3 when 95% of exchangeable Al is neutralized, whereas that on volcanic ash soil is increased from an initial 5.3 to 5.5 only when lime is applied at rate to neutralize the equivalent of 200% exchangeable Al. 4. A high correlation coefficient (r=0.99) was obtained between exchangeable Al and exchangeable acidity. This indicates that exchangeable acidity is primarly a result of exchangeable Al. 5. In pot experiments with soybean cultivated on one of the hill land soils (Songjoong soil) the application of fused phosphate and triple superphosphate based on a 5% saturation rate ($P_2O_5$ 32.1 kg/10a) showed that the liming factor for calculation of the optimum lime requirements based on exchangeable acidity was 0.594 for fuses phosphate or 1.132 for tripple superphosphate, and optimum pH is approximately 6.0 and optimum neutralization rate of exchangeable Al is 80-90%.

  • PDF