• Title/Summary/Keyword: Software receiver

Search Result 342, Processing Time 0.024 seconds

A Highly Efficient and Fast Algorithm for Implementing a Real-Time Software GNSS Receiver

  • Im, Sung-Hyuck;Jee, Gyu-In;Kim, Hak-Sun;Cho, Sang-Do;Ko, Sun-Jun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.395-398
    • /
    • 2006
  • In this paper, for implementing a real-time software GNSS receiver we propose the highly efficient and fast algorithms such as partial down-conversion, phase rotator, composite I&Q accumulation, Virtual DCO technique, and parallel acquisition using FFT. When the proposed algorithms are used, more 30 tracking channels with 3 tracking arm(early-prompt-late) is operated real-time on Intel 2.8GHz personal computer. Also, the partial down-conversion reduces the FFT size, for parallel acquisition, to 1/8 of conventional FFT-size and the program size includes map is not exceed 1Mbyte. Finally, the proposed real-time software GNSS receiver using the proposed algorithms provides the navigation solution with below 10 meter rms error.

  • PDF

Implementation of Mobile WiMAX Receiver using Mobile Computing Platform for SDR System (모바일 컴퓨팅 플랫폼을 이용한 SDR 기반 MOBILE WIMAX 수신기 구현)

  • Kim, Han Taek;Ahn, Chi Young;Kim, June;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.1
    • /
    • pp.117-123
    • /
    • 2012
  • This paper implements mobile Worldwide Interoperability for Microwave Access (WiMAX) receiver using Software Defined Radio (SDR) technology. SDR system is difficult to implement on the mobile handset because of restrictions that are computing power and under space constraints. The implemented receiver processes mobile WiMAX software modem on Open Multimedia Application Platform (OMAP) System on Chip (SoC) and Field Programmable Gate Array (FPGA). OMAP SoC is composed of ARM processor and Digital Signal Processor (DSP). ARM processor supports Single Instruction Multiple Data (SIMD) instruction which could operate on a vector of data with a single instruction and DSP is powerful image and video accelerators. For this reason, we suggest the possibility of SDR technology in the mobile handset. In order to verify the performance of the mobile WiMAX receiver, we measure the software modem runtime respectively. The experimental results show that the proposed receiver is able to do real-time signal processing.

Hardware and Software Implementation of a GPS Receiver Test Bed Running from PC (PC 기반 GPS 수신기 하드웨어 모듈 및 펌웨어 개발)

  • Long, Nguyen Phi;Hieu, Nguyen Hoang;Lee, Sang-Hoon;Park, Ok-Deuk;Kim, Hyun-Su;Kim, Han-Sil
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.394-396
    • /
    • 2006
  • When developing a new GPS receiver module, the essential problems are evaluation of reliable algorithms, software debugging, and performance comparison between algorithms to find optimal solution. Most GPS receiver modules nowadays use a correlator to track signals from satellites and an MCU (Micro Controller Unit) to control operations of the entire module. The problem of software evaluation from MCU is very difficult, due to limitation of MCU resources and low ability of interfacing with user. Normally, user has to expense special tool kit for a limiting access to MCU but it is also hard to use. This article introduces an implementation of a GPS receiver test bed using correlator GP2021 interfacing with ISA (Industry Standard Architecture) PC bus. This way can give user complete control and visibility into the operation of the receiver, then user can easily debug program and test algorithms. For this article, the least square method is implemented to test the hardware and software performance.

  • PDF

Introducing Software Defined Radio to 4GWireless: Necessity, Advantage, and Impediment

  • Zamat, Hassan;Nassar, Carl R.
    • Journal of Communications and Networks
    • /
    • v.4 no.4
    • /
    • pp.344-350
    • /
    • 2002
  • This work summarizes the current state of the art in software radio for 4G systems. Specifically, this work demonstrates that classic radio structures, e.g., heterodyne reception, homodyne reception, and their improved implementations, are inadequate selections for multi-mode reception. This opens the door to software defined radio, a novel reception architecture which promises ease in multi-band, multi-protocol design. The work presents the many advantages of such an architecture, including flexibility, reduced cost via component reduction, and improved reliability via, e.g., the elimination of environmental instability. The work also explains the limitations that currently curtail the widespread use of SDR, including issues surrounding A/D converters, management of software and power, and clock generation. This provides direction for future research to enable the broad applicability of SDR in 4G cellular and beyond.

Receiver-centric Buffer Blocking-aware Multipath Data Distribution in MPTCP-based Heterogeneous Wireless Networks

  • Cao, Yuanlong;Liu, Qinghua;Zuo, Yi;Ke, Fenfen;Wang, Hao;Huang, Minghe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4642-4660
    • /
    • 2016
  • One major concern of applying Multipath TCP (MPTCP) to data delivery in heterogeneous wireless networks is that the utilization of asymmetric paths with diverse networking-related parameters may cause severe packet reordering and receive buffer blocking (RB2LOC). Although many efforts are devoting to addressing MPTCP's packet reordering problems, their sender-controlled solutions do not consider balancing overhead between an MPTCP sender and receiver, and their fully MPTCP mode cannot make MPTCP achieve a desired performance. This paper proposes a novel receiver-centric buffer blocking-aware data scheduling strategy for MPTCP (dubbed MPTCP-rec) necessitating the following aims: (1) alleviating MPTCP's packet reordering and RB2LOC problems, (2) improving the MPTCP performance, and (3) balancing load between the MPTCP sender and receiver. Simulation results show that the proposed MPTCP-rec solution outperforms the existing MPTCP solutions in terms of data delivery performance in heterogeneous wireless networks.

Implementation of Real-Time Software GPS Receiver and Performance Analysis (실시간 소프트웨어 GPS 수신기 구현 및 성능 분석)

  • Kwag, Heui-Sam;Ko, Sun-Jun;Won, Jong-Hoon;Lee, Ja-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2350-2352
    • /
    • 2004
  • This paper presents the implementation-tation of the real-time software GPS Receiver based on FFT and FLL assisted PLL tracking algorithm. The FFT(fast fourier transform) based GPS si-gnal acquisition scheme provides a fast TTFF(time to first fix) performance. The tracking based on FLL assisted PLL enables tracking of GPS signal in a high dynamic environment. The designed software GPS receiver uses the indexing method for generating replica carrier to reduce computation load. The performance of the implemented GPS receiver is evaluated using high-dynamic simulated data from a simulator and real static data.

  • PDF

A Design of Software Receiver for GNSS Signal Processing

  • Choi, Seung-Hyun;Kim, Jae-Hyun;Shin, Cheon-Sig;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.48-52
    • /
    • 2007
  • Recently, the research of GPS receiver which uses the Software-Defined Radio(SDR) technique is being actively proceeded instead of traditional hardware-based receiver. The software-based GPS receiver indicates that the signal acquisition and tracking treated by the hardware-based platform are processed as the software technique through a microprocessor. In this paper, GPS software receiver is designed by using SDR technique and then the signal acquisition, tracking, and the navigation message decoding parts are verified through the PC-based simulation. Moreover, the efficient algorithms are developed about the signal acquisition and tracking parts in order to obtain the accurate pseudorange. Finally, the pseudorange is calculated through the relative channel delay received through the different satellite of L1 frequency band. GPS software receiver proposed in this paper will be included in the element of GPS/Galileo complex system of development target and will provide not only the method that verifies the performance for Galileo Sensor Station standard but also usability by providing various debugging environments.

  • PDF

A GPS Receiver Structure for Multi-beamforming (다중 빔 형성을 위한 GPS 수신기 구조)

  • Lee, Geon-Woo;Lim, Deok-Won;Lee, Chang-Won;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • GPS receivers can be disrupted by intentional or unintentional jamming, then it is unable to receive GPS signals and it is impossible to get the correct navigation results. Anti-jamming schemes using array antennas are being studied well due to high performance of those, and the efforts to apply them to GPS receiver are also being done. A GPS receiver structure for a multiple beam-forming scheme among those schemes has been proposed in this paper, and the performance is also compared with that using a general GPS receiver structure. For a general GPS receiver structure, each satellite signal which is formed by a beam-forming scheme is summed to be processed in a part of digital signal processing. For a proposed GPS receiver structure, however, each satellite signal is respectively processed by a designated channel in a part of digital signal processing. Finally, it is confirmed that the proposed GPS receiver structure is superior to a general GPS receiver structure in a point of the carrier to noise power ratio and the navigation accuracy using a software platform.

Development of Software GPS Receiver for GEO Satellites Using Weak Signal Receiver Algorithm (미약신호 수신 알고리즘을 활용한 정지궤도위성 탑재용 소프트웨어 GPS 수신기 개발)

  • Kim, Chong-Won;Kim, Ghang-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • The altitudes of GEO satellites are higher than those of GPS satellites. Therefore the visibility and the received power of GPS signals are totally different from those of the users near the Earth's surface. In this study, we analyzed the visibility of GPS signals received on GEO satellites. And we also developed a software GPS receiver that works on GEO satellites using CCMDB algorithm which is a weak signal receiver algorithm. GPS signals received on a GEO satellite are generated by a commercial hardware GPS simulator and used for the verification of the developed software GPS receiver. The mean 3D position and velocity error are calculated as 165.636 m and 0.5081 m/s.

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF