• 제목/요약/키워드: Software evolution

검색결과 195건 처리시간 0.023초

휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘 (An Efficient Clustering Algorithm based on Heuristic Evolution)

  • 류정우;강명구;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.80-90
    • /
    • 2002
  • 클러스터링이란 한 군집에 포함된 데이터들 간의 유사한 성질을 갖도록 데이터들을 묶는 것으로 패턴인식, 영상처리 등의 공학 분야에 널리 적용되고 있을 뿐만 아니라, 최근 많은 관심의 대상이 되고 있는 데이터 마이닝의 주요 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 K-means나 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 개선하였으며, 클러스터링의 특성을 분산도와 분리도로 정의하였다. 분산도는 임의의 클러스터의 중심으로부터 포함된 데이터들이 어느 정도 흩어져 있는지를 나타내는 척도인 반면, 분리도는 임의의 데이터와 모든 클러스터 중심간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터 중심간의 거리를 나타내는 척도이다. 이 두 척도를 이용하여 자동으로 적절한 클러스터 개수를 결정하게 하였다. 또한 진화알고리즘의 문제점인 탐색공간의 확대에 따른 수행시간의 증가는 휴리스틱 연산을 적용함으로써 크게 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 이차원과 다차원 실험데이타를 사용하여 실험한 결과 제안한 알고리즘의 성능이 우수함을 나타내었다.

Receptor binding motif surrounding sites in the Spike 1 protein of infectious bronchitis virus have high susceptibility to mutation related to selective pressure

  • Seung-Min Hong;Seung-Ji Kim;Se-Hee An;Jiye Kim;Eun-Jin Ha;Howon Kim;Hyuk-Joon Kwon;Kang-Seuk Choi
    • Journal of Veterinary Science
    • /
    • 제24권4호
    • /
    • pp.51.1-51.17
    • /
    • 2023
  • Background: To date, various genotypes of infectious bronchitis virus (IBV) have co-circulated and in Korea, GI-15 and GI-19 lineages were prevailing. The spike protein, particularly S1 subunit, is responsible for receptor binding, contains hypervariable regions and is also responsible for the emerging of novel variants. Objective: This study aims to investigate the putative major amino acid substitutions for the variants in GI-19. Methods: The S1 sequence data of IBV isolated from 1986 to 2021 in Korea (n = 188) were analyzed. Sequence alignments were carried out using Multiple alignment using Fast Fourier Transform of Geneious prime. The phylogenetic tree was generated using MEGA-11 (ver. 11.0.10) and Bayesian analysis was performed by BEAST v1.10.4. Selective pressure was analyzed via online server Datamonkey. Highlights and visualization of putative critical amino acid were conducted by using PyMol software (version 2.3). Results: Most (93.5%) belonged to the GI-19 lineage in Korea, and the GI-19 lineage was further divided into seven subgroups: KM91-like (Clade A and B), K40/09-like, QX-like (I-IV). Positive selection was identified at nine and six residues in S1 for KM91-like and QX-like IBVs, respectively. In addition, several positive selection sites of S1-NTD were indicated to have mutations at common locations even when new clades were generated. They were all located on the lateral surface of the quaternary structure of the S1 subunits in close proximity to the receptor-binding motif (RBM), putative RBM motif and neutralizing antigenic sites in S1. Conclusions: Our results suggest RBM surrounding sites in the S1 subunit of IBV are highly susceptible to mutation by selective pressure during evolution.

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.

유전 알고리즘을 이용한 국소가중회귀의 다중모델 결합을 위한 점진적 앙상블 학습 (Incremental Ensemble Learning for The Combination of Multiple Models of Locally Weighted Regression Using Genetic Algorithm)

  • 김상훈;정병희;이건호
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권9호
    • /
    • pp.351-360
    • /
    • 2018
  • 전통적으로 나태한 학습에 해당하는 국소가중회귀(LWR: Locally Weighted Regression)모델은 입력변수인 질의지점에 따라 예측의 해를 얻기 위해 일정구간 범위내의 학습 데이터를 대상으로 질의지점의 거리에 따라 가중값을 달리 부여하여 학습 한 결과로 얻은 짧은 구간내의 회귀식이다. 본 연구는 메모리 기반학습의 형태에 해당하는 LWR을 위한 점진적 앙상블 학습과정을 제안한다. LWR를 위한 본 연구의 점진적 앙상블 학습법은 유전알고리즘을 이용하여 시간에 따라 LWR모델들을 순차적으로 생성하고 통합하는 것이다. 기존의 LWR 한계는 인디케이터 함수와 학습 데이터의 선택에 따라 다중의 LWR모델이 생성될 수 있으며 이 모델에 따라 예측 해의 질도 달라질 수 있다. 하지만 다중의 LWR 모델의 선택이나 결합의 문제 해결을 위한 연구가 수행되지 않았다. 본 연구에서는 인디케이터 함수와 학습 데이터에 따라 초기 LWR 모델을 생성한 후 진화 학습 과정을 반복하여 적절한 인디케이터 함수를 선택하며 또한 다른 학습 데이터에 적용한 LWR 모델의 평가와 개선을 통하여 학습 데이터로 인한 편향을 극복하고자 한다. 모든 구간에 대해 데이터가 발생 되면 점진적으로 LWR모델을 생성하여 보관하는 열심학습(Eager learning)방식을 취하고 있다. 특정 시점에 예측의 해를 얻기 위해 일정구간 내에 신규로 발생된 데이터들을 기반으로 LWR모델을 생성한 후 유전자 알고리즘을 이용하여 구간 내의 기존 LWR모델들과 결합하는 방식이다. 제안하는 학습방법은 기존 단순평균법을 이용한 다중 LWR모델들의 선택방법 보다 적합도 평가에서 우수한 결과를 보여주고 있다. 특정지역의 시간 별 교통량, 고속도로 휴게소의 시간별 매출액 등의 실제 데이터를 적용하여 본 연구의 LWR에 의한 결과들의 연결된 패턴과 다중회귀분석을 이용한 예측결과를 비교하고 있다.

S-MADP : 중대형 프로젝트의 모바일 애플리케이션을 위한 서비스 기반 개발 프로세스 (S-MADP : Service based Development Process for Mobile Applications of Medium-Large Scale Project)

  • 강태덕;김경백;정기주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.555-564
    • /
    • 2013
  • 최근 모바일 기기의 혁신적 진화와 태블릿 PC나 스마트폰의 급격한 확산이 이루어지면서 개인의 일상뿐 아니라 기업의 업무용 애플리케이션에도 새로운 변화가 이루어지고 있다. 특히 수개월 이상의 개발 기간이 필요한 중대형 업무용 모바일 애플리케이션의 경우 그 복잡도나 중요도가 급격하게 늘고 있다. 현재 애자일 기반의 모바일 애플리케이션 개발 프로세스가 이러한 중대형 모바일 애플리케이션 개발에 사용되지만, 개발자의 숙련도에 대한 높은 의존도와 상세 작성지침들의 부족한 현상등의 문제점들이 나타나고 있다. 본 논문에서는 이러한 문제점들을 해결하기 위해 S-MADP (Smart Mobile Application Development Process)를 제안한다. S-MADP은 객체지향 설계프로세스를 확장한 서비스 기반의 중대형 모바일 애플리케이션을 위한 개발 프로세스이다. 다양하고 제한된 모바일 기기들의 리소스를 보다 효과적으로 사용하는 애플리케이션의 개발을 위해 사용자 요구사항을 서버기반 또는 클라이언트기반의 서비스로 정의하고 효과적인 서비스의 재사용을 위한 상세지침들을 제공한다. 또한 다양한 사용자 인터페이스를 지원하는 화면 개발을 위한 효과적인 UI설계 상세지침을 지원한다. S-MADP의 성능을 검증하기 위해 3개사의 대형 업무용 모바일 애플리케이션 개발 프로젝트를 진행하였고 그 결과를 분석하였다. 수행된 프로젝트들은 TB사의 'TBS(TB Mobile Service) 3.0', TS사의 '모바일 앱스토어'와 TG그룹의 '모바일 그룹웨어' 프로젝트들이다. 프로젝트를 수행한 결과, 기존의 애자일 기반의 모바일 애플리케이션 개발 프로세스를 사용할 때에 비해서 S-MADP은 모바일 애플리케이션 개발 환경에서 중점적으로 고려되어야 하는 '리소스 사용의 최소화', '서비스 기반의 설계', '모바일 기기에 적합한 사용자 인터페이스'에 대한 상세설계 내용을 보다 자세히 제공하는 것으로 확인되어, 개발된 모바일 애플리케이션의 사용성, 유지보수성, 효율성을 향상 시킨다고 분석되었다. 또한 S-MADP를 현장 적용한 결과 애자일 기반의 개발 프로세스에서 예상된 성능보다 25%향상된 성능으로 중대형 모바일 애플리케이션을 개발 할 수 있음을 확인 하였다.