• 제목/요약/키워드: Software availability

검색결과 257건 처리시간 0.024초

코드 오프로딩 환경에서 프로그램 분할과 데이터 보호에 대한 연구 (Study on Program Partitioning and Data Protection in Computation Offloading)

  • 이은영;박수희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권11호
    • /
    • pp.377-386
    • /
    • 2020
  • 모바일 클라우드 컴퓨팅은 클라우드 컴퓨팅 환경에서 클라이언트 기기로 모바일이나 임베디드 디바이스가 사용되는 경우를 말하며, 단말 기기의 뛰어난 이동성과 상대적으로 낮은 연산 자원의 신뢰도를 그 특징으로 한다. 스마트폰과 소형 주변기기의 확산으로 최근 모바일 클라우드 컴퓨팅에 대한 연구가 급증하고 있다. 코드 오프로딩은 무선 네트워크 연결되어 있는 모바일 시스템이 연산 작업의 일부를 보다 빠른 속도를 가진 서버로 옮겨서 진행함으로써 효율을 향상시키는 기법이다. 코드 오프로딩은 모바일 클라우드 환경에서 모바일 디바이스가 가지는 제한된 자원을 극복하는 중요한 기법의 하나로 각광받고 있다. 본 논문에서는 코드 오프로딩의 성능을 좌우하는 요소를 분석하고, 다양한 요소 중에서 프로그램 정적 분할 기법과 데이터 보호에 관련된 최근 연구동향을 요소별로 분석한다. 또한 현재까지 진행되고 있는 다양한 연구와 관련 분야 신기술을 고려한 향후 발전 방향을 논의한다.

단일 빔 집속 LUT를 이용한 AESA 레이다의 근전계 시뮬레이션 기법 (A Study on the Near-Field Simulation Method for AESA RADAR using a Single Beam-Focusing LUT)

  • 주혜선
    • 한국시뮬레이션학회논문지
    • /
    • 제28권2호
    • /
    • pp.81-88
    • /
    • 2019
  • 능동배열안테나는 원전계에 있는 표적과 지형 등을 탐지/추적하기 때문에 개발 간 항공기 탑재 전 시험 수행을 위해 원전계 거리 조건을 만족하게 하는 수십 미터 이상의 지상 시험장이 필요하다. 따라서 빔 조향, 표적, 클러터 및 재밍 등의 시험 수행을 위해 지상에서 높은 곳에 실험실을 구축하는 야외 실험장을 구축하는 것이 일반적이다. 하지만 야외 실험장은 주변 지형, 날씨, 외부 신호등으로 인해 시험에 영향을 받으며, 시간/공간/비용적인 제약사항이 많다. 이러한 문제를 해결하기 위해 근전계에서 빔을 집속 시키는 이론적인 방안이 제시되었지만, 이를 실험실 환경으로 구축하기 위해서는 AESA 레이다 하드웨어의 변화를 초래한다. 본 논문에서는 관련 하드웨어와 소프트웨어의 변화 없이 AESA 레이다를 구성하는 안테나 송수신 모듈의 편차를 보정하기 위해 단일 LUT를 이용해 근전계의 빔 집속을 구현하는 기법을 제안한다. 제안한 기법은 원전계 실험 환경 및 다중 LUT를 이용한 근전계 빔 집속 구현 기법보다 실험 비용을 최소화하면서도 유사한 실험 결과를 도출할 수 있는 장점이 있다.

Application of Multi-periodic Harmonic Model for Classification of Multi-temporal Satellite Data: MODIS and GOCI Imagery

  • Jung, Myunghee;Lee, Sang-Hoon
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.573-587
    • /
    • 2019
  • A multi-temporal approach using remotely sensed time series data obtained over multiple years is a very useful method for monitoring land covers and land-cover changes. While spectral-based methods at any particular time limits the application utility due to instability of the quality of data obtained at that time, the approach based on the temporal profile can produce more accurate results since data is analyzed from a long-term perspective rather than on one point in time. In this study, a multi-temporal approach applying a multi-periodic harmonic model is proposed for classification of remotely sensed data. A harmonic model characterizes the seasonal variation of a time series by four parameters: average level, frequency, phase, and amplitude. The availability of high-quality data is very important for multi-temporal analysis.An satellite image usually have many unobserved data and bad-quality data due to the influence of observation environment and sensing system, which impede the analysis and might possibly produce inaccurate results. Harmonic analysis is also very useful for real-time data reconstruction. Multi-periodic harmonic model is applied to the reconstructed data to classify land covers and monitor land-cover change by tracking the temporal profiles. The proposed method is tested with the MODIS and GOCI NDVI time series over the Korean Peninsula for 5 years from 2012 to 2016. The results show that the multi-periodic harmonic model has a great potential for classification of land-cover types and monitoring of land-cover changes through characterizing annual temporal dynamics.

Kiosk training strategies based on IT educational App for older adults

  • Jee, Sung-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.239-245
    • /
    • 2021
  • 4차 산업혁명과 코로나19 사태로 인하여, 키오스크와 같은 디지털기기 사용가능 여부는 디지털 격차를 가진 노인에게 생존과 직결되는 문제이다. 본 논문은 고령자 대상 기존 정보화교육의 문제점을 분석하여 고령자의 신체·인지 노화와 라이프 사이클에 맞춤화된 정보화교육 전략을 제안한다. 본 연구에서 제안하는 고령자 맞춤형 정보화교육은 시간과 장소에 구애받지 않고 반복 학습을 지원하는 교육용 애플리케이션 기반 IT교육 방법으로서, 키오스크 기능을 기능성게임 형식의 교육용 애플리케이션으로 개발하고 교육 후의 효과성을 실험하였다. 연구방법은 첫째 문헌분석과 FGI를 통하여 고령자 맞춤형 교육용 애플리케이션 UI 사용성 평가 프레임을 제안하고, 둘째 제안한 평가 프레임에 의거한 교육용 애플리케이션 개발, 셋째 키오스크 교육에 교육용 애플리케이션을 활용하여 교육 효과성을 실험하였다. 실험결과, 교육용 애플리케이션 사용한 후의 미션 성공률은 80.6%로 사용 전(25.5%)과 비교하여 55.1%P의 향상과 함께 미션성공 소요시간도 단축하였다. 본 연구는 비대면 상황에서 제안한 정보화교육이 기존 교육의 한계를 극복할 수 있음을 확인하였다.

멀티 클라우드 서비스 공통 플랫폼 설계 및 구현 (Design and Implementation of Multi-Cloud Service Common Platform)

  • 김수영;김병섭;손석호;서지훈;김윤곤;강동재
    • 한국멀티미디어학회논문지
    • /
    • 제24권1호
    • /
    • pp.75-94
    • /
    • 2021
  • The 4th industrial revolution needs a fusion of artificial intelligence, robotics, the Internet of Things (IoT), edge computing, and other technologies. For the fusion of technologies, cloud computing technology can provide flexible and high-performance computing resources so that cloud computing can be the foundation technology of new emerging services. The emerging services become a global-scale, and require much higher performance, availability, and reliability. Public cloud providers already provide global-scale services. However, their services, costs, performance, and policies are different. Enterprises/ developers to come out with a new inter-operable service are experiencing vendor lock-in problems. Therefore, multi-cloud technology that federatively resolves the limitations of single cloud providers is required. We propose a software platform, denoted as Cloud-Barista. Cloud-Barista is a multi-cloud service common platform for federating multiple clouds. It makes multiple cloud services as a single service. We explain the functional architecture of the proposed platform that consists of several frameworks, and then discuss the main design and implementation issues of each framework. To verify the feasibility of our proposal, we show a demonstration which is to create 18 virtual machines on several cloud providers, combine them as a single resource, and manage it.

Analysis of 3D Building Construction Applications in Augmented Reality

  • Khan, Humera Mehfooz;Waseemullah, Waseemullah;Bhutto, Muhammad Aslam;Khan, Shariq Mahmood;Baig, Mirza Adnan
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.340-346
    • /
    • 2022
  • Construction industry is considered as one of the oldest industries in the world since human came into being and the need of their own space is realized. All this led to make the world a space of many beautiful constructive ventures. As per the requirements of today's world, every industry is recognizing the need for use and adoption of modern as well as innovative technologies due to their benefits and timely production. Now construction industry has also started adopting the use of modern and innovative technologies during their projects but still the rate of adoption is so slow. From design to completion, construction projects take a lot to manage for which technology based solutions have continuously been proposed. These include Computer Aided Design (CAD), building information modeling (BIM) and cloud computing have been proved to be much successful until now. The construction projects are high budgeted, and direly require timely and successful completion with quality, resource and other constraints. So, the researchers observe the need of more clear and technology based communication between the construction projects and its constructors and other stakeholders is required before and during the construction to take timely precautions for expected issues. This study has analyzed the use of Augmented Reality (AR) technology adopting GammaAR, and ARki applications in construction industry. It has been found that both applications are light-weighted, upgradable, provide offline availability and collaborative environment as well as fulfil most of the requirements of the construction industry except the cost. These applications also support different screen size for better visualization and deep understanding. Both applications are analyzed, based on construction's application requirements, usability of AR and ratings of applications user collected from application's platform. The purpose of this research is to provide a detail insight of construction applications which are using AR to facilitate both the future developers and consumers.

Integrating Resilient Tier N+1 Networks with Distributed Non-Recursive Cloud Model for Cyber-Physical Applications

  • Okafor, Kennedy Chinedu;Longe, Omowunmi Mary
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권7호
    • /
    • pp.2257-2285
    • /
    • 2022
  • Cyber-physical systems (CPS) have been growing exponentially due to improved cloud-datacenter infrastructure-as-a-service (CDIaaS). Incremental expandability (scalability), Quality of Service (QoS) performance, and reliability are currently the automation focus on healthy Tier 4 CDIaaS. However, stable QoS is yet to be fully addressed in Cyber-physical data centers (CP-DCS). Also, balanced agility and flexibility for the application workloads need urgent attention. There is a need for a resilient and fault-tolerance scheme in terms of CPS routing service including Pod cluster reliability analytics that meets QoS requirements. Motivated by these concerns, our contributions are fourfold. First, a Distributed Non-Recursive Cloud Model (DNRCM) is proposed to support cyber-physical workloads for remote lab activities. Second, an efficient QoS stability model with Routh-Hurwitz criteria is established. Third, an evaluation of the CDIaaS DCN topology is validated for handling large-scale, traffic workloads. Network Function Virtualization (NFV) with Floodlight SDN controllers was adopted for the implementation of DNRCM with embedded rule-base in Open vSwitch engines. Fourth, QoS evaluation is carried out experimentally. Considering the non-recursive queuing delays with SDN isolation (logical), a lower queuing delay (19.65%) is observed. Without logical isolation, the average queuing delay is 80.34%. Without logical resource isolation, the fault tolerance yields 33.55%, while with logical isolation, it yields 66.44%. In terms of throughput, DNRCM, recursive BCube, and DCell offered 38.30%, 36.37%, and 25.53% respectively. Similarly, the DNRCM had an improved incremental scalability profile of 40.00%, while BCube and Recursive DCell had 33.33%, and 26.67% respectively. In terms of service availability, the DNRCM offered 52.10% compared with recursive BCube and DCell which yielded 34.72% and 13.18% respectively. The average delays obtained for DNRCM, recursive BCube, and DCell are 32.81%, 33.44%, and 33.75% respectively. Finally, workload utilization for DNRCM, recursive BCube, and DCell yielded 50.28%, 27.93%, and 21.79% respectively.

Study on the Recognition and Purchase Status of Eco-Friendly Oral Hygiene Products

  • Su-min Jeon;Do-Seon Lim;Jae-kyeong Kim;Jae-ui Lee;Su-hyeon Lee;Seong-eun Park;Im-hee Jung
    • 치위생과학회지
    • /
    • 제22권4호
    • /
    • pp.241-248
    • /
    • 2022
  • Background: Plastic waste generates pollutants in the process of incineration or landfilling, and accumulates in water or marine organisms, causing adverse effects on the environment and the human body. Recently, various eco-friendly oral hygiene products (Eco-OHPs) such as bamboo toothbrushes and biodegradable plastic toothbrushes have been developed. Therefore, this study aimed to investigate the current level of awareness and purchasing status of eco-OHPs among adults who are interested in eco-friendly products. Methods: This study included adults aged >19 years who regularly visited eco-friendly shops and online sites; the online survey links were distributed during their visits to eco-friendly Internet cafés and companies. Of the 22 questions, seven assessed the participants' general characteristics, three assessed the general oral hygiene care products used, six assessed the level of awareness of Eco-OHPs, and six assessed the purchasing status of Eco-OHPs. Frequency analysis, chi-square test, and regression analysis were performed using SPSS software. Results: Among the respondents, 108 (51.4%) were aware of Eco-OHPs, and 79 (37.6%) had experience purchasing Eco-OHPs. The most common reason for not purchasing was the lack of information about related brands or products (74, 56.5%). The most common platform used in obtaining information was the Internet (general: 31.5%, eco-friendly: 46.3%), such as Social Network Service, Internet cafes, and blogs. The experience in purchasing Eco-OHPs was affected by whether the respondents recognized the possibility of contributing to environmental preservation, availability of vendors, product safety, and the number of eco-friendly products purchased. Conclusion: In order to expand the use of Eco-OHPs, various efforts such as promotion of eco-friendly characteristics, determination of related vendors, reliable analysis of product safety, and expansion of product experience opportunities are required.

Understanding the Current State of Deep Learning Application to Water-related Disaster Management in Developing Countries

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.145-145
    • /
    • 2022
  • Availability of abundant water resources data in developing countries is a great concern that has hindered the adoption of deep learning techniques (DL) for disaster prevention and mitigation. On the contrary, over the last two decades, a sizeable amount of DL publication in disaster management emanated from developed countries with efficient data management systems. To understand the current state of DL adoption for solving water-related disaster management in developing countries, an extensive bibliometric review coupled with a theory-based analysis of related research documents is conducted from 2003 - 2022 using Web of Science, Scopus, VOSviewer software and PRISMA model. Results show that four major disasters - pluvial / fluvial flooding, land subsidence, drought and snow avalanche are the most prevalent. Also, recurrent flash floods and landslides caused by irregular rainfall pattern, abundant freshwater and mountainous terrains made India the only developing country with an impressive DL adoption rate of 50% publication count, thereby setting the pace for other developing countries. Further analysis indicates that economically-disadvantaged countries will experience a delay in DL implementation based on their Human Development Index (HDI) because DL implementation is capital-intensive. COVID-19 among other factors is identified as a driver of DL. Although, the Long Short Term Model (LSTM) model is the most frequently used, but optimal model performance is not limited to a certain model. Each DL model performs based on defined modelling objectives. Furthermore, effect of input data size shows no clear relationship with model performance while final model deployment in solving disaster problems in real-life scenarios is lacking. Therefore, data augmentation and transfer learning are recommended to solve data management problems. Intensive research, training, innovation, deployment using cheap web-based servers, APIs and nature-based solutions are encouraged to enhance disaster preparedness.

  • PDF

Accuracy of orthodontic movements with 3D printed aligners: A prospective observational pilot study

  • Marco Migliorati;Sara Drago;Tommaso Castroflorio;Paolo Pesce;Giovanni Battista;Alessandra Campobasso;Giorgio Gastaldi;Filippo Forin Valvecchi;Anna De Mari
    • 대한치과교정학회지
    • /
    • 제54권3호
    • /
    • pp.160-170
    • /
    • 2024
  • Objective: Owing to the availability of 3D software, scanners, and printers, clinicians are encouraged to produce in-office aligners. Recently, a new direct-printing resin (Tera Harz TC-85DAC) has been introduced. Studies on its mechanical characteristics and biological effects have been published; however, evidence on its efficacy in orthodontic treatment remains scarce. This pilot study aimed to investigate the accuracy of teeth movement achieved with direct-printed aligners. Methods: Seventeen patients (eight males and nine females) with a mean age of 27.67 ± 8.95 years, presenting with dental rotations < 30° and spaces/crowding < 5 mm, were recruited for this study. The teeth movement was planned starting from a T0 digital dental cast. The 3D direct-printed aligners were produced using Tera Harz TC-85DAC resin. Once the orthodontic treatment was completed, a final digital cast was obtained (T1). The planned teeth positions were then superimposed onto the T0 and T1 digital models. The differences between the programmed movements and the achieved overall torque, tip, rotation, and transverse dimensions were assessed using the paired t test or Wilcoxon's signed rank test. Results: The overall accuracies for torque, tip, and rotation were 67.6%, 64.2%, and 72.0%, respectively. The accuracy of the change in transverse diameter was 99.6%. Conclusions: Within the limits of the present pilot study (difficulties with abnormally shaped teeth and use of attachments), it can be concluded that 3D printed aligners can be successfully printed in-house and utilized for mildly crowded cases, with a comparable accuracy of tooth movement to that of other aligners.