• Title/Summary/Keyword: Software V&V

Search Result 721, Processing Time 0.034 seconds

The Software Verification and Validation Tasks for a Safety Critical System in Nuclear Power Plants

  • Cheon Se Woo;Cha Kyung Ho;Kwon Kee Choon
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • This paper introduces the software life-cycle V&V (verification and validation) tasks for the KNICS (Korea nuclear instrumentation and control system) project. The objectives of the V&V tasks are mainly to develop a programmable logic controller (PLC) for safety critical instrumentation and control (I&C) systems, and then to apply the PLC to developing the prototype of an engineered safety features-component control system (ESF-CCS) in nuclear power plants. As preparative works for the software V&V, various kinds of software plans and V&V task procedures have been developed according to the software life-cycle management. A number of software V&V tools have been adopted or developed to efficiently support the V&V tasks. The V&V techniques employed in this work include a checklist-based review and inspection, a requirement traceability analysis, formal verification, and life-cycle based software testing.

Verification and Validation to develop Safety-critical Software (안전에 중요한 소프트웨어 개발을 위한 확인 및 검증)

  • Lee Jong-Bok;Suh Sang-Moon;Keum Jong-Yong
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.114-119
    • /
    • 2004
  • Software verification and validation(V&V) is a means to develop high-quality software and assure safety and reliability for software. Also, we can achieve the desired software quality through systematic V&V activities. The software to be applied safety critical system like nuclear power plants is required to setup the V&V methodology that comply with licensing requirements for nuclear power plants and should be performed V&V activities according to it. In this paper, we classified safety-critical, safety-related and non-safety for software according to safety function to be peformed and define V&V activities to be applied software grade. Also, we defined V&V activities, procedures and documentation for each phase of software development life cycle and showed techniques and management to perform V&V. Finally, we propose the V&V framework to be applied software development of SMART(System-integrated Modular Advanced ReacTor) MMIS (Man-Machine Interface System) and to comply with domestic licensing requirements.

  • PDF

NuSEE: AN INTEGRATED ENVIRONMENT OF SOFTWARE SPECIFICATION AND V&V FOR PLC BASED SAFETYCRITICAL SYSTEMS

  • Koo, Seo-Ryong;Seong, Poong-Hyun;Yoo, Jun-Beom;Cha, Sung-Deok;Youn, Cheong;Han, Hyun-Chul
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.259-276
    • /
    • 2006
  • As the use of digital systems becomes more prevalent, adequate techniques for software specification and analysis have become increasingly important in nuclear power plant (NPP) safety-critical systems. Additionally, the importance of software verification and validation (V&V) based on adequate specification has received greater emphasis in view of improving software quality. For thorough V&V of safety-critical systems, V&V should be performed throughout the software lifecycle. However, systematic V&V is difficult as it involves many manual-oriented tasks. Tool support is needed in order to more conveniently perform software V&V. In response, we developed four kinds of computer aided software engineering (CASE) tools to support system specification for a formal-based analysis according to the software lifecycle. In this work, we achieved optimized integration of each tool. The toolset, NuSEE, is an integrated environment for software specification and V&V for PLC based safety-critical systems. In accordance with the software lifecycle, NuSEE consists of NuSISRT for the concept phase, NuSRS for the requirements phase, NuSDS for the design phase and NuSCM for configuration management. It is believed that after further development our integrated environment will be a unique and promising software specification and analysis toolset that will support the entire software lifecycle for the development of PLC based NPP safety-critical systems.

Software Verification & Validation for Digital Reactor Protection System (디지털 원자로 보호계통의 소프트웨어 확인 및 검증)

  • Park, Gee-Yong;Kwon, Kee-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.185-187
    • /
    • 2005
  • The reactor protection system is the most important function for the safe operation of nuclear powerplants (NPPs) in that such system protects a nuclear reactor tore whose damage can cause an enormous disaster to the nuclear facility and the public. A digital reactor protection system (DRPS) is being developed in KAERI for use in the newly-constructed NPPs and also for replacing the existing analog-type reactor Protection systems. In this paper, an software verification and validation (V&V) activities for DRPS, which are independent of the DRPS development processes, are described according to the software development life cycle. The main activities of DRPS V&V processes are the software planning documentations, the verification of software requirements specification (SRS) and software design specification (SDS), the verification of codes, the tests of the integrated software and system. Moreover, the software safety analysis and the software configuration management are involved in the DRPS V&V processes. All of the V&V activities are described, in detail, in this paper.

  • PDF

An Optimized V&V Methodology to Improve Quality for Safety-Critical Software of Nuclear Power Plant (원전 안전-필수 소프트웨어의 품질향상을 위한 최적화된 확인 및 검증 방안)

  • Koo, Seo-Ryong;Yoo, Yeong-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • As the use of software is more wider in the safety-critical nuclear fields, so study to improve safety and quality of the software has been actively carried out for more than the past decade. In the nuclear power plant, nuclear man-machine interface systems (MMIS) performs the function of the brain and neural networks of human and consists of fully digitalized equipments. Therefore, errors in the software for nuclear MMIS may occur an abnormal operation of nuclear power plant, can result in economic loss due to the consequential trip of the nuclear power plant. Verification and validation (V&V) is a software-engineering discipline that helps to build quality into software, and the nuclear industry has been defined by laws and regulations to implement and adhere to a through verification and validation activities along the software lifecycle. V&V is a collection of analysis and testing activities across the full lifecycle and complements the efforts of other quality-engineering functions. This study propose a methodology based on V&V activities and related tool-chain to improve quality for software in the nuclear power plant. The optimized methodology consists of a document evaluation, requirement traceability, source code review, and software testing. The proposed methodology has been applied and approved to the real MMIS project for Shin-Hanul units 1&2.

Suggestion of RE and TDD-based V&V Development Process for Scientific Software Implementation (과학용 소프트웨어 구현을 위한 RE와 TDD기반 V&V 개발 프로세스 제안)

  • Lee, Jae-Hong;Kim, Duksu;Kim, Seung-Hee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.79-88
    • /
    • 2021
  • Scientific software requires a development process different from conventional application software due to its unique characteristics, such as expert-level deep domain knowledge requirements. In this study, we proposed a V & V development process based on RE (Reverse Engineering) and TDD (Test-Driven Development) for software development for science. We also configured a virtual scenario for the actual project, applied it, checked the procedure, and refined it. The development process of this study, suggested for the purpose of developing scientific software, will contribute to the development and application of the software that can provide high quality and high reliability. And This study is expected to serve as an opportunity for the development of scientific software and the spread of research.

An Estimation of Risky Module using SVM (SVM을 이용한 위험모듈 예측)

  • Kim, Young-Mi;Jeong, Choong-Heui;Kim, Hyeon-Soo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.435-439
    • /
    • 2009
  • Software used in safety-critical system must have high dependability. Software testing and V&V (Verification and Validation) activities are very important for assuring high software quality. If we can predict the risky modules of safety-critical software, we can focus testing activities and regulation activities more efficiently such as resource distribution. In this paper, we classified the estimated risk class which can be used for deep testing and V&V. We predicted the risk class for each module using support vector machines. We can consider that the modules classified to risk class 5 and 4 are more risky than others relatively. For all classification error rates, we expect that the results can be useful and practical for software testing, V&V, and activities for regulatory reviews.

RISKY MODULE PREDICTION FOR NUCLEAR I&C SOFTWARE

  • Kim, Young-Mi;Kim, Hyeon-Soo
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.663-672
    • /
    • 2012
  • As software based digital I&C (Instrumentation and Control) systems are used more prevalently in nuclear plants, enhancement of software dependability has become an important issue in the area of nuclear I&C systems. Critical attributes of software dependability are safety and reliability. These attributes are tightly related to software failures caused by faults. Software testing and V&V (Verification and Validation) activities are hence important for enhancing software dependability. If the risky modules of safety-critical software can be predicted, it will be possible to focus on testing and V&V activities more efficiently and effectively. It should also make it possible to better allocate resources for regulation activities. We propose a prediction technique to estimate risky software modules by adopting machine learning models based on software complexity metrics. An empirical study with various machine learning algorithms was executed for comparing the prediction performance. Experimental results show SVMs (Support Vector Machines) perform as well or better than the other methods.

TTA 시험$\cdot$인증 서비스 - 소프트웨어 분야 -

  • 김혜경
    • TTA Journal
    • /
    • s.87
    • /
    • pp.162-168
    • /
    • 2003
  • TTA(한국정보통신기술 협회)는 2003년 4월 7일 품질 인증제품으로 연희정보통신㈜의''상·하수도 범용/UFCom v 1.0'', ㈜뉴테크웨이브의 ''VirusChaser v 5.0''등 2개의 제품에 대하여 Good Software 마크를 발급하였다. 그리고 2003년 4월 30일에 ㈜웨어밸리의''Orange for ORACLE v 2.2'', ㈜테크다임의''Techdigm Office v 2.0'', ㈜엔지스 테크널러지의''G-Solution Waterworks/Sewerage v 1.0'', 삼성에스디에스㈜의''uniCITY Standard v 1.0'', ''uniCITY Enterprise v 1.0''등 5개의 제품에 대하여 Good Software 마크를 발급하였다. 본 고에서는 상기의 인증 획득한 제품에 대하여 소개하고자 한다.

  • PDF