• Title/Summary/Keyword: Software Reliability Estimation

Search Result 158, Processing Time 0.033 seconds

The Impact of Technology Adoption on Organizational Productivity

  • LAKHWANI, Monika;DASTANE, Omkar;SATAR, Nurhizam Safie Mohd;JOHARI, Zainudin
    • The Journal of Industrial Distribution & Business
    • /
    • v.11 no.4
    • /
    • pp.7-18
    • /
    • 2020
  • Purpose: This research investigates the impact of technology adoption on organisation productivity. The framework has three independent variables viz. technological change, information technology (IT) infrastructure, and IT knowledge management and one dependent variable as organisational productivity. Research design, data and methodology: An explanatory research design with a quantitative research method was employed, and data was collected using a self-administered questionnaire using online as well as an offline survey. The sample consisted of 300 IT managers and senior-level executives (production as well as service team) in leading IT companies in Malaysia selected using snowball sampling. Normality and reliability assessment was performed in the first stage utilising SPSS 22, and Confirmatory Factory Analysis (CFA) was performed with maximum likelihood estimation to assess the internal consistency, convergent validity, and discriminant validity. Finally, Structural Equation Model (SEM) and path analysis are conducted using AMOS 22. Results: The research findings demonstrated that technological change and IT infrastructure positively and significantly impact the organisation's productivity while IT knowledge management has significant but negative impact on organizational productivity of IT companies in Malaysia. Conclusion: The research concludes that all three factors plays important role in deciding organizational producvity. Recommendations, implications, limitations and future research avenues are discussed.

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

A Study on the Debris Flow Hazard Mapping Method using SINMAP and FLO-2D

  • Kim, Tae Yun;Yun, Hong Sic;Kwon, Jung Hwan
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.2
    • /
    • pp.15-24
    • /
    • 2016
  • This study conducted an evaluation of the extent of debris flow damage using SINMAP, which is slope stability analysis software based on the infinite slope stability method, and FLO-2D, a hydraulic debris flow analysis program. Mt. Majeok located in Chuncheon city in the Gangwon province was selected as the study area to compare the study results with an actual 2011 case. The stability of the slope was evaluated using a DEM of $1{\times}1m$ resolution based on the LiDAR survey method, and the initiation points of the debris flow were estimated by analyzing the overlaps with the drainage network, based on watershed analysis. In addition, the study used measured data from the actual case in the simulation instead of existing empirical equations to obtain simulation results with high reliability. The simulation results for the impact of the debris flow showed a 2.2-29.6% difference from the measured data. The results suggest that the extent of damage can be effectively estimated if the parameter setting for the models and the debris flow initiation point estimation are based on measured data. It is expected that the evaluation method of this study can be used in the future as a useful hazard mapping technique among GIS-based risk mapping techniques.

A Study of Analysis of Attribute and Operation based on COTS System (COTS 시스템 기반 속성 및 행위 분석에 의한 생명주기에 관한 연구)

  • Lee, Eun-Ser;Kim, Joong-Soo
    • The KIPS Transactions:PartD
    • /
    • v.17D no.6
    • /
    • pp.443-452
    • /
    • 2010
  • COTS system is increasingly seen as one of the main jobs of reuse development. It involves reliability of COTS that might affect the project schedule or the quality of the software being developed and taking action to avoid these risks. The results of the COTS analysis should be documented in the project plan along with an analysis of the attribute and operation. Effective risk management makes it easier to cope with problems and to ensure that these do not lead to unacceptable budget or schedule slippage. This research provides criteria of analysis of risk items to the estimation of process milestone on COTS development.

Fundamental Aspects of Hybrid-Online Simulation for One Dimensional Consolidation Analysis (Hybrid-Online 방법을 통한 압밀해석)

  • Kwon, Young-Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.1
    • /
    • pp.67-80
    • /
    • 2006
  • This paper presented an application of the geotechnical hybrid-online simulation to the consolidation settlement problem of soft clay. Conventional numerical analyses have used idealized soil constitutive models obtained from the laboratory soil tests. On the other hand, in the hybrid-online simulation, soil response was directly introduced to numerical analyses from the soil element test, and, therefore, the complicated parameter estimation was not required in this method. Fundamentals of the hybrid-online simulation method and the development of the algorithm and corresponding hardware and software for the system were presented in this study. Furthermore, an incremental loading consolidation and the hydraulic conductivity test and a comparative study using the Terzagh's conventional consolidation theory were carried out for the system verification including the performance of the experimental device and source coding of software components, and the data reliability obtained from the system. In conclusion, we found that the hybrid-online consolidation simulation system could reproduce the consolidation behavior of the remolded Kaolinite specimen withoutany discrepancies.

  • PDF

Neural Network Model for Construction Cost Prediction of Apartment Projects in Vietnam

  • Luu, Van Truong;Kim, Soo-Yong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2009
  • Accurate construction cost estimation in the initial stage of building project plays a key role for project success and for mitigation of disputes. Total construction cost(TCC) estimation of apartment projects in Vietnam has become more important because those projects increasingly rise in quantity with the urbanization and population growth. This paper presents the application of artificial neural networks(ANNs) in estimating TCC of apartment projects. Ninety-one questionnaires were collected to identify input variables. Fourteen data sets of completed apartment projects were obtained and processed for training and generalizing the neural network(NN). MATLAB software was used to train the NN. A program was constructed using Visual C++ in order to apply the neural network to realistic projects. The results suggest that this model is reasonable in predicting TCCs for apartment projects and reinforce the reliability of using neural networks to cost models. Although the proposed model is not validated in a rigorous way, the ANN-based model may be useful for both practitioners and researchers. It facilitates systematic predictions in early phases of construction projects. Practitioners are more proactive in estimating construction costs and making consistent decisions in initial phases of apartment projects. Researchers should benefit from exploring insights into its implementation in the real world. The findings are useful not only to researchers and practitioners in the Vietnam Construction Industry(VCI) but also to participants in other developing countries in South East Asia. Since Korea has emerged as the first largest foreign investor in Vietnam, the results of this study may be also useful to participants in Korea.

Uncertainty Calculation Algorithm for the Estimation of the Radiochronometry of Nuclear Material (핵물질 연대측정을 위한 불확도 추정 알고리즘 연구)

  • JaeChan Park;TaeHoon Jeon;JungHo Song;MinSu Ju;JinYoung Chung;KiNam Kwon;WooChul Choi;JaeHak Cheong
    • Journal of Radiation Industry
    • /
    • v.17 no.4
    • /
    • pp.345-357
    • /
    • 2023
  • Nuclear forensics has been understood as a mendatory component in the international society for nuclear material control and non-proliferation verification. Radiochronometry of nuclear activities for nuclear forensics are decay series characteristics of nuclear materials and the Bateman equation to estimate when nuclear materials were purified and produced. Radiochronometry values have uncertainty of measurement due to the uncertainty factors in the estimation process. These uncertainties should be calculated using appropriate evaluation methods that are representative of the accuracy and reliability. The IAEA, US, and EU have been researched on radiochronometry and uncertainty of measurement, although the uncertainty calculation method using the Bateman equation is limited by the underestimation of the decay constant and the impossibility of estimating the age of more than one generation, so it is necessary to conduct uncertainty calculation research using computer simulation such as Monte Carlo method. This highlights the need for research using computational simulations, such as the Monte Carlo method, to overcome these limitations. In this study, we have analyzed mathematical models and the LHS (Latin Hypercube Sampling) methods to enhance the reliability of radiochronometry which is to develop an uncertainty algorithm for nuclear material radiochronometry using Bateman Equation. We analyzed the LHS method, which can obtain effective statistical results with a small number of samples, and applied it to algorithms that are Monte Carlo methods for uncertainty calculation by computer simulation. This was implemented through the MATLAB computational software. The uncertainty calculation model using mathematical models demonstrated characteristics based on the relationship between sensitivity coefficients and radiative equilibrium. Computational simulation random sampling showed characteristics dependent on random sampling methods, sampling iteration counts, and the probability distribution of uncertainty factors. For validation, we compared models from various international organizations, mathematical models, and the Monte Carlo method. The developed algorithm was found to perform calculations at an equivalent level of accuracy compared to overseas institutions and mathematical model-based methods. To enhance usability, future research and comparisons·validations need to incorporate more complex decay chains and non-homogeneous conditions. The results of this study can serve as foundational technology in the nuclear forensics field, providing tools for the identification of signature nuclides and aiding in the research, development, comparison, and validation of related technologies.

A Models of Economic Analysis in Safety Diagnosis for Remodeling Strategies of Apartment Housing (공동주택의 리모델링 전략을 위한 안전진단의 경제성분석 모델)

  • Seo Kwang-Jun;Choi Mi-Ra;Shin Nam-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.164-171
    • /
    • 2005
  • The importance of the life cycle cost analysis(LCCA) for apartment housing remodeling projects has been fully recognized over the last decade. Accordingly theoretical models, guidelines, and supporting software systems were developed for the life cycle cost analysis of apartment housing remodeling systems. However, the level of consensus on LCCA results is still low due to the lack of reliable data on remodeling activities for safety diagnosis. in order to predict the reliability based LCCA of the given case, suggested the remodeling strategies level after reviewing other related materials. Apply the real information of the economic index. And based on such analytical measures, remodeling and operation cost and LCC in remodeling strategies level have been predicted; suggests the basic information about remodeling interventions level for the apartment housing. The LCC analysis models and the fuzzy logic based safety assessment presented in this study can greatly contribute to the value-oriented design alternative selection, estimation of the economic analysis, and the allocation of budget for apartm.

The Implementation of Load Resistance Measurement System using Time-Frequency Domain Reflectometry (시간-주파수 영역 반사파 계측방법을 이용한 부하 저항 측정 시스템 구현)

  • Kwak, Ki-Seok;Park, Tae-Geun;Yoon, Tae-Sung;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.10
    • /
    • pp.435-442
    • /
    • 2006
  • One of the most important topics about the safety of electrical and electronic system is the reliability of the wiring system. The Time-Frequency Domain Reflectometry(TFDR) is a state-of-the-art system for detecting and estimating of the fault on a wiring. In this paper, We've considered the load resistance measurement on a coaxial cable using TFDR in a way of expanded application. The TFDR system was built using commercial Pci extensions for Instrumentation(PXI) and LabVIEW. The proposed real time TFDR system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display part. To implement real time system, all of the parts were programmed by the LabVIEW which is one of the graphical programming languages. Using the application software implemented by the LabVIEW, we were able to design a proper reference signal which is suitable for target cable and control not only the arbitrary waveform generator in the signal generation part but alto the digital storage oscilloscope in the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we carried out load impedance measurement experiments. The experimental results showed that the proposed system are able not only to detect the location of impedance discontinuity on the cable but also to estimate the load resistance with high accuracy.

Development of Economic Evaluation Solution and Power Prediction of Renewable Energy System (신재생에너지 발전 출력 예측과 경제성 종합평가 기술개발)

  • Jeoune, Dae-Seong;Kim, Jin-Young;Kim, Hyun-Goo;Kim, Jonghyun;Youm, Carl;Shin, Ki-Yeol
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.6
    • /
    • pp.93-112
    • /
    • 2019
  • In this paper, a very new web-based software for renewable energy system (RES) design and economic evaluation was introduced. This solution would provide the precise RES estimation service including not only photovoltaic (PV), wind turbine (WT) and fuel cell (FC) individually but also energy storage system (ESS) as combined forms with PV or WT. The three reasons why we ought to develop it are: First, the standardized tool suitable to the domestic environment for estimating power generation from RES facilities and economic evaluation is required. Secondly, the standardized tool is needed to spread domestic RES supply policy and to promote the new industry in the micro-grid field. The last, the reliability of economic evaluation should be enhanced more for new facilities. To achieve those aims, the weather database of one hundred locations have established and the RES facility database has also constructed. For the energy management, mathematical models for PV, WT, ESS and FC were developed. As a final phase, the analytical process to evaluate economics has performed with field data verification.