• 제목/요약/키워드: Softening resistance

검색결과 94건 처리시간 0.027초

프릿트 첨가에 따른 저온소성 기판과 Cu와의 접합 거동에 관한 연구 (The Effect of Frit on Bonding Behavior of Low-firing-substate and Cu Conductor)

  • 박정현;이상진
    • 한국세라믹학회지
    • /
    • 제32권5호
    • /
    • pp.601-607
    • /
    • 1995
  • The bond strength between the low-firing-substrate and Cu conductor depended on the softening point and the amount of frit added to the metal paste. The addition of 3 wt% frit (softening point: 68$0^{\circ}C$) to the metal paste resulted in the improvement of bond strength, which was approximately 3 times higher (3kg/$\textrm{mm}^2$) than that of non frit condition. It was also found that fracture surface shifted to the ceramic substrate in the interface region. These phenomena were attributed to the frit migration into the metal-ceramic interface. It was thought that the migration of glass frit occurred extensively when the softening point of glass firt was 68$0^{\circ}C$. The sheet resistance of Cu conductor remained constant by the addition of 4 wt% frit regardless of softening point of frit. For all samples with more than 4 wt% frit, the sheet resistance increased abruptly.

  • PDF

1GPa급 DP강 전기저항점용접부의 경도분포와 미세조직의 상관관계 (Hardness Distribution and Microstructures of Electric Resistance Spot Welded 1GPa Grade Dual Phase Steel)

  • 나혜성;공종판;한태교;진광근;강정윤
    • Journal of Welding and Joining
    • /
    • 제30권2호
    • /
    • pp.76-80
    • /
    • 2012
  • In this study, the effect of the welding current on the hardness characteristics and microstructure in the resistance spot welding of 1GPa grade cold-rolled DP steel was investigated, Also, correlation between the hardness and microstructure was discussed. In spite of the change in the welding current, the hardness distributions near weld was similar. the hardness in the HAZ and the fusion zone was higher than that of the base metal and the hardness in the fusion zone was variated with the location. Especially, the hardness of HAZ adjacent to the base metal showed maximum value, and softening zone in the base metal adjacent to HAZ was found. With the increasing of welding current, there were no difference in maximum hardness and average hardness in the fusion zone were, but the hardness of the softening zone reduced. The difference in the hardness in each location of weld due to grain size of prior austenite. The softening of the base metal occurred by tempering of the martensite.

Characteristics of Sulfide Stress Corrosion Cracking of High Strength Pipeline Steel Weld

  • Chang, Woong-Seong;Yoon, Byoung-Hyun;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • 제3권2호
    • /
    • pp.81-86
    • /
    • 2004
  • The sulfide stress corrosion cracking (SSCC) resistance of API X70 grade steel weldment has been studied using SSCC test in NACE TM-O177 method A. Also, microstructures and hardness distribution of weldment was investigated. The microstructure of SAW joint composed ferrite, pearlite and some MA constituent. Instead of hardening in CGHAZ, softening on the HAZ near base metal occurred. The low carbon TMCP type steel used for SAW showed softening behaviour in the HAZ adjacent to base metal, which was known to be closely related with the SOHIC (stress oriented hydrogen induced cracking). The SSC testing revealed that the API X70 SAW weld was suitable for sour service, satisfying the NACE requirements. By suppressing softening in the ICHAZ region, the SSCC resistance of low carbon TMCP steel welded joints could be more improved.

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

Steel fibre reinforced concrete for elements failing in bending and in shear

  • Barros, Joaquim A.O.;Lourenco, Lucio A.P.;Soltanzadeh, Fatemeh;Taheri, Mahsa
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.1-27
    • /
    • 2013
  • Discrete steel fibres can increase significantly the bending and the shear resistance of concrete structural elements when Steel Fibre Reinforced Concrete (SFRC) is designed in such a way that fibre reinforcing mechanisms are optimized. To assess the fibre reinforcement effectiveness in shallow structural elements failing in bending and in shear, experimental and numerical research were performed. Uniaxial compression and bending tests were executed to derive the constitutive laws of the developed SFRC. Using a cross-section layered model and the material constitutive laws, the deformational behaviour of structural elements failing in bending was predicted from the moment-curvature relationship of the representative cross sections. To evaluate the influence of the percentage of fibres on the shear resistance of shallow structures, three point bending tests with shallow beams were performed. The applicability of the formulation proposed by RILEM TC 162-TDF for the prediction of the shear resistance of SFRC elements was evaluated. Inverse analysis was adopted to determine indirectly the values of the fracture mode I parameters of the developed SFRC. With these values, and using a softening diagram for modelling the crack shear softening behaviour, the response of the SFRC beams failing in shear was predicted.

SFRC의 인장 파괴거동에 대한 해석 (Analysis on the Tensile Fracture Behavior of SFRC)

  • 김규선;이차돈;심종성;최기봉;박제선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1993년도 봄 학술발표회 논문집
    • /
    • pp.65-72
    • /
    • 1993
  • Steel fiber reinforced concrete(SFRC) which is made by short, randomly distributed steel fibers in concrete is superior in its tensile mechanical properties to plain concrete in enhancement of tensile strength and tensile ductility. These improvements are attributed to crack arresting mechanism and formation of longer crack paths due to fibers , which as a consequence lead to increase in energy absorption capacity of SFRC. In the post-peak region under tensile stresses, major macrocrack forms at critical section. The opening of this macrocrack is mainly resisted by both of the fiber pull-out bridging the cracked surfaces and the resistance by matrix softening. In this study, micromechaincal approach has been made in order to simulate tensile behavior of SFRC and based on which the theoretical model is presented. This model reflects the features of both the composite material concept and the spacing concept in predicting tensile strength of SFRC. The model also takes into account for the effects of matrix tensile softening and fiber bridging by pull-out on the resistance for the post-peak behavior of SFRC. It has been shown that the developed model satisfactory predicts the experimental results.

  • PDF

Li2O-Al2O3-SiO2계 결정화 유리의 특성(I) (Properties of Li2O-Al2O3-SiO2 Glass Ceramic System(I))

  • 양준환;정헌생
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.431-436
    • /
    • 1988
  • The properties of scid-resistance to boiling HCl, thermal expansion coefficient and softening temperature of mother glass and glass-ceramic of LAS systems were investigated at the contents of SiO2 varing from 57 to 67wt%. The nucleation and growth of crystalline phase of LAS compositions were carried out at 50$0^{\circ}C$ and $700^{\circ}C$. The crystalline phase jconsists of lithium alumino silicate, lithum meta silicate, lithium disilicate, $\alpha$-crystobalite and $\alpha$-quartz. Lithium alumino silicate(virgilite) is the major crystalline phase in the glass ceramics. The degree of acid resistant property was increased in proportion with the silica content for both glass and ceramics. Glass-ceramic gives lower acid-resistance and thermal expansion coefficient while softening temperature shows higher for glass-ceramic than for mother glass.

  • PDF

Al6082-T6의 MIG용접부에서 입열량에 따른 열영향부의 연화와 인장특성에 관한 연구 (A Study on Tensile Properties and HAZ Softening Depending on the Amount of Heat Input in MIG Welding of Al6082-T6)

  • 백상엽;박경도;김원일;조상명
    • Journal of Welding and Joining
    • /
    • 제29권1호
    • /
    • pp.59-64
    • /
    • 2011
  • Al6082-T6 is widely used because of its corrosion resistance and excellent strength. HAZ softening occurs in MIG welding process for this aluminium alloys because this aluminium alloy is heated to higher temperature than its aging temperature during welding. Therefore, low heat input and minimum standard deviation of heat input are required for narrow HAZ width and, for higher strength of welds. In this study, Al6082-T6 was used to examine for HAZ softening with various heat input in aluminium MIG welding. For weldments, micro hardness was measured and tensile test was carried out. Minimum hardness was increased at high speed welding such as 80cm/min and 120cm/min in welding speed comparing with 40cm/min. Also, in case of high speed welding such as 80cm/min and 120cm/min, tensile strength of weldments was increased about 10% comparing with low speed welding(40cm/min).

Performance of Rock-socketed Drilled Shafts in Deep Soft Clay Deposits

  • Kim, Myung-Hak
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.409-429
    • /
    • 2006
  • In designing rock-socketed drilled shaft, bearing capacity evaluation is very important because the maximum values of base and side resistance are not generally mobilized at the same value of displacement, FHWA and AASHTO code suggest different ultimate bearing capacity formular according to rock type and shaft settlement. In domestic code suggest base resistance and side resistance can be added on condition that after confirming the result of field load test with axial load transfer test. This paper shows that static load test and hi-directional load test result analysis of deep rock-socketed drilled shaft in three different sites. Load-settlement curve, t-z, and q-w curve in rock-socketed part were calculated and compared. t-z curve in weathered and soft rock showed no deflection softening behavior in pretty large strain (about 2-3% of diameter). Ultimate resistance could be the summation of side resistance and base resistance in rock-socketed drilled shaft in domestic sites.

  • PDF

Improvement in Water Resistance of Desulfurized Gypsum by Novel Modification of Silicone Oil Paraffin Composite Emulsion-based Waterproofing Agent

  • Cao, Jing-Yu;Li, Jin-Peng;Jiang, Ya-Mei;Wang, Su-Lei;Ding, Yi;Oh, Won-Chun
    • 한국세라믹학회지
    • /
    • 제56권6호
    • /
    • pp.558-565
    • /
    • 2019
  • In this study, dimethyl silicone oil and liquid paraffin were combined and subsequently emulsified; the resulting mixture was innovatively incorporated into desulfurized gypsum to resolve its drawback of a poor water resistance. The waterproof mechanism of the composite emulsion and liquid paraffin emulsion with mass fractions of 1%, 2%, 3%, and 4% were investigated. The effect of the desulfurized gypsum on the waterproof performance and basic mechanical properties were also investigated. The configuration of the composite waterproofing agent was characterized by FTIR and 1HNMR. The results showed that, compared with the traditional liquid paraffin emulsion-based waterproofing agent, the softening coefficient of the silicone oil paraffin composite emulsion-based water-repellent agent was increased by 60% and attained a value of 0.89. Combined with the waterproof mechanism and microscope morphology analysis of gypsum hydration products, the improvement in the water resistance of water resistance was primarily attributed to the formation of a silicone hydrophobic membrane between the crystals of the gypsum block; this ensured that water could not penetrate the crystal.