• Title/Summary/Keyword: Softening Point

Search Result 167, Processing Time 0.026 seconds

Characteristics of the PbO-Bi2O3-B2O3-ZnO-SiO2 Glass System Doped with Pb Metal Filler (Pb 금속필러가 첨가된 PbO-Bi2O3-B2O3-ZnO-SiO2계 유리의 특성)

  • Choi, Jinsam;Jeong, DaeYong;Shin, Dong Woo;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.238-243
    • /
    • 2013
  • We investigated the effect of Pb-metal filler added to a hybrid paste(PbO-$Bi_2O_3-B_2O_3$-ZnO glass frit and Pb-powder), for joining flip-chip sat lower temperatures than normal. The glass transition temperature was detected at $250^{\circ}C$ and the softening point occurred at $330^{\circ}C$. As the temperature increased, the specific density decreased due to the volatility of the Pb-metal and boron component in the glass. When the glass was heat-treated at $350^{\circ}C$ for 5 min, XRD results revealed a crystalline $Pb_4Bi_3B_7O_{19}$ phase that had been initiated by the addition of Pb-filler in the hybrid paste. The addition of the Pb-metal filler caused are action between the Pb-metal and glass that accelerated the formation of the liquid phase. The liquid phase that formed, promoted bonding between the flip-chip substrate sat lower temperature.

A Study on the Low Cycle Fatigue Characteristics for the Structural Low Carbon Steels (構造용 低炭素鋼材의 低사이클 疲勞特性에 관한 硏究)

  • 김영식;노재충;한명수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.307-315
    • /
    • 1989
  • In recent years, the fatigue design method by analysis for the mechanical components and the welded structures has much increased, instead of the fatigue design method by rule that has been widely used from the past days. When a fatigue design is conducted by that method, the basic informations, fatigue life curves are mainly obtained from the results of the strain controlled low cycle fatigue test. From these point of views, the low cycle fatigue test is coming to be given a much importance lately. In this paper, the strain controlled low cycle fatigue properties at room temperature in air environment were investigated for the low carbon forged steel, SF45A, and the rolled steel for the welded structure, SM 41B. Throughout the test, strain ratio, R, was maintained constant with the fully reversed condition, -1. As the experimental results, the cyclic stress-strain behaviours of the test materials were different each other, but the low cycle fatigue life-time of them appeared to show little difference in the region of this test conditions.

Development and Performance Evaluation of Liquid-type Chemical Additive for Warm-Mix Asphalt (중온화 액상형 화학첨가제 개발과 이를 적용한 중온 아스팔트의 성능 평가)

  • Baek, Cheolmin;Yang, Sunglin;Hwang, Sungdo
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.107-116
    • /
    • 2013
  • PURPOSES: The liquid-type chemical warm-mix asphalt (WMA) additive has been developed. This study evaluates the basic properties of the additive and the mechanical properties of WMA asphalt and mixture manufactured by using the newly developed chemical additive. METHODS: First, the newly developed WMA additive was applied to the original asphalt by various composition of additive components and dosage ratio of additive. These WMA asphalt binders were evaluated in terms of penetration, softening point, rotational viscosity, and PG grade. Based on the binder test results, one best candidate was chosen to apply to the mixture and then the mechanical properties of WMA mixture were evaluated for moisture susceptibility, dynamic modulus, and rutting and fatigue resistance. RESULTS : According to the binder test, WMA asphalt binders showed the similar properties to the original asphalt binder except the penetraion index of WMA additive was a little higher than original binder. From the Superpave mix design, the optimum asphalt content and volumetric properties of WMA mixture were almost the same with those of hot mix asphalt (HMA) mixture even though the production and compaction temperatures were $30^{\circ}C$ lower for the WMA mixture. From the first set of performance evaluation, it was found that the WMA mixture would have some problem in moisture susceptibility. The additive was modified to improve the resistance to moisture and the second set of performance evaluation showed that the WMA mixture with modified chemical additive would have the similar performance to HMA mixture. CONCLUSIONS : Based on the various laboratory tests, it was concluded that the newly developed chemical WMA additve could be successfully used to produce the WMA mixture with the comparable performance to the HMA mixture. These laboratory evaluations should be confirmed by applying this additive to the field and monitoring the long-term performance of the pavement, which are scheduled in the near future.

Evaluation of Warm-Recycled Asphalt Mixtures using Polyethylene Wax-Based Additive (중온화 첨가제를 사용한 중온 재생 아스팔트 혼합물 평가)

  • Lee, Jin Wook;Lee, Moon Sup;Kim, Yong Joo;Cho, Dong Woo;Kwon, Soo Ahn
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2013
  • PURPOSES : The main purposes of this study are to examine the influences of polyethylene wax-based WMA additive on the optimum asphalt content of warm-recycled asphalt mixture based on the Marshall mix design and to evaluate performance of warm-recycled asphalt mixture containing 30% RAP with polyethylene wax-based WMA additive. METHODS: Physical and rheological properties of the residual asphalt were evaluated in terms of penetration, softening point, ductility and performance grade (PG) in order to examine the effects of polyethylene wax-based WMA additive on the residual asphalt. Also, To evaluate performance characteristics of the warm-recycled asphalt mixtures using polyethylene wax-based WMA additive along with a control hot-recycled asphalt mixture, indirect tensile strength test, modified Lottman test, dynamic immersion test, wheel tracking test and dynamic modulus test were conduced in the laboratory. RESULTS : Based on the limited laboratory test results, polyethylene wax-based WMA additive is effective to decrease mixing and compacting temperatures without compromising the volumetric characteristics of warm-recycled asphalt mixtures compared to hot-recycled asphalt mixture. Also, it doesn't affect the optimum asphalt content on recycled-asphalt mixture. All performance test results show that the performance of warm-recycled asphalt mixture using polyethylene wax-based WMA additive is similar to that of a control hot-recycled asphalt mixture. CONCLUSIONS: Overall, the performance of warm-recycled asphalt mixture using polyethylene wax-based WMA additive is comparable to hot-recycled asphalt mixture.

Effect of Paraffin Oil on the Low Temperature Adhesion Properties of CR/SBS Modified Asphalt Sealants (CR/SBS 개질 아스팔트 실란트의 저온접착특성에서 파라핀 오일 첨가에 의한 효과)

  • Kim, Doo Byung;Lee, Dae Woo;Kim, Jong-Seok
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • The main objective of this work was studying the influence of paraffin oil(PO) on the adhesion properties at low temperature in styrene-butadiene-styrene(SBS) copolymer and crumb rubber(CR) modified asphalt. The temperature susceptibility of SBS/CR asphalt and PO/SBS/CR/asphalt blends were measured by penetration and softening point. Adhesion properties at low temperature and dispersion of modifiers in PO/SBS/CR/asphalt blends were evaluated by universal test machine and florescence microscopy, respectively. The adhesion properties of PO/SBS/CR/asphalt blends at low temperature increased in the proportion of SBS contents with both 5 and 10 wt % of paraffin oil. Results showed that the maximum tensile adhesion strength and toughness energy at $-20^{\circ}C$ were obtained when PO and SBS contents were 10 wt % and 6 wt %, respectively. The addition of PO is effective for enhancing the flexibility of SBS/CR/asphalt blends and leads to the increase of toughness at low temperature.

A Study on Improvement of Chemical Durability in the $Na_2O$-CaO-$SiO_2$ System Glass ($Na_2O$-CaO-$SiO_2$ 계 유리의 내화학적 성질 향상에 관한 연구)

  • Kim, Jong-Ock;Park, Won-Kyu;Lim, Dae-Young;Kim, Moon-Ki
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.111-118
    • /
    • 1996
  • In order to improve the chemical durability of glass in the $Na_2O$-CaO-$SiO_2$ system, it was investigated in the effect of $B_2O_3$ and ZnO addition and changing amount of each composition, $Na_2O$, $Al_2O_3$, $Li_2O$. In this minimize the change of softening point of glass was as follow.(wt%)$B_2O_3$:3.36%, ZnO:2.88%, $Na_2O$:9.93%, $Al_2O_3$, $Li_2O$:0.19%, $SiO_2$:70.56%, CaO:11.22%, $K_2O$:0.14%

  • PDF

Adhesion Properties of Hot-Melt Pressure Sensitive Adhesives Based on Metallocene Polyolefin (메탈로센 폴리올레핀을 이용한 핫멜트 점착제의 제조 및 특성)

  • Shim, Jaeho;Sung, Ickkyeung;Lee, Jungjoon
    • Journal of Adhesion and Interface
    • /
    • v.14 no.2
    • /
    • pp.95-100
    • /
    • 2013
  • In this study, a series of hot-melt pressure sensitive adhesives (HMPSAs) based on metallocene polyolefin (me-PO) were prepared to investigate their possibility of replacing the HMPSAs based on styrenic block copolymers (SBCs). In addition, to optimize the performance of HMPSAs based on me-PO, several tackifiers having different softening point and molecular weight were evaluated. To achieve the HMPSAs which can satisfy the Dahlquist Criterion, hot melts required over 10% of process oil. To obtain the HMPSAs having low viscosity which can be applied by a spraying type applicator, secondary polymer having relatively low crystallinity was required. And, tackifier having high molecular weight attributed to increasing the cohesive strength of me-PO based HMPSAs.

A Study on the Diverse Roles of Sugar in Confectionery and Bread-making. (제빵 제과에 다양한 설탕 이용에 관한 연구)

  • 이명호
    • Culinary science and hospitality research
    • /
    • v.4
    • /
    • pp.249-269
    • /
    • 1998
  • What satisfies the desire of human beings about taste most easily is sweet taste, and it has seemed that the pronoun of sweet taste is sugar. Sugar is used in confectionery and bread-making essentially, and it has influence on the structure and touch of baked confectionery. In addition, if we soften the and apply heat, coloring is made. Thus, it colors good. It doesn't have a sweet taste, but it has the effect to emit fragrance variously, balance and soften the product. The kinds of sugar are very diverse, and it is sugar to be referred to as white sugar is used most frequently. In this study, this researcher examined the classification of physicochemical property and melting point etc. of sugar in confectionery and bread-making through theoretical study, about the simple classification of sugar. In addition, this researcher approached about the role of sugar in confectionery and bread-making and about the influence to have when it is more or less than proper quantity, centering around function. As the result, this researcher extracted the importance of sugar in confectionery and bread-making. It means that the increase of 5% of sugar quantity decreases the absorption quantity of moisture by 1% in bread-making and that the excess of 8% of sugar slow the action of yeast in straight method. Besides, there are the properties such as absorptive property, permeability, storage nature, aging prevention of starch, oxidation restraint of oils and fats, the gelation action of pectin, the fermentation acceleration of yeast, and the emulsification-maintaining-nautre and antiseptics effect of fat-soluble material. And in confectionery, sugar makes fragrance and peel color, increases the storage nature with moisture maintenance and has the softening effect. So, it is considered that the attitude to study and make efforts continuously on the basis of the role of sugar will have to be unfolded in confectionery and bread-making.

  • PDF

Asphalt Sealant Containing the Waste Edible Oil (폐식용유를 이용한 아스팔트 실란트)

  • Kim, Seong-Jun
    • Elastomers and Composites
    • /
    • v.39 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • This work is about the development or asphalt sealant using the waste edible oil. Asphalt sealant has been used for crack filler and bridge deck joint sealer Several plasticizers such as aromatic or paraffin process oils, DOP, Bunker C fuel oil, and waste edible oil were compounded with the basic components such as asphalt(AP-5), a thermoplastic elastomer(SBS triblock copolymer), a tackifying agent(petroleum resin), and stabilizers. Penetration, softening point, ductility, and elongation by tensile adhesion of those asphalt sealant compounds were measured. Their properties were changed largely depending on both the type and content of plasticizers. Waste edible oil and DOP were the best plasticizers for the low temperature tensile adhesion characteristics. Penetration and elongation by tensile adhesion of asphalt sealant compounds increased with the increase of waste edible oil content and decreased with the increase of talc content. The manufacture of asphalt sealant with low penetration and excellent low temperature tensile adhesion was possible by the recipe optimization.

Modification of isotropic coal-tar pitch by acid treatments for carbon fiber melt-spinning

  • Yoo, Mi Jung;Ko, Hyo Jun;Lim, Yun-Soo;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.15 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this work, thermal treatment accompanied with different acid treatments was applied to a commercial coal tar pitch (CTP) to obtain a spinnable precursor pitch for carbon fiber. In the case of thermal treatment only, a relatively high reaction temperature of between $380^{\circ}C$ and $400^{\circ}C$ was required to obtain a softening point (SP) range of $220^{\circ}C-260^{\circ}C$ and many meso-phase particles were created during the application of high reaction temperature. When nitric acid or sulfuric acid treatment was conducted before the thermal treatment, the precursor pitch with a proper SP range could be obtained at reaction temperatures of $280^{\circ}C-300^{\circ}C$, which were about $100^{\circ}C$ lower than those for the case of thermal treatment only. With the acid treatments, the yield and SP of the precursor pitch increased dramatically and the formation of meso-phase was suppressed due to the lower reaction temperatures. Since the precursor pitches with acid and thermal treatment were not spinnable due to the inhomogeneity of properties such as molecular weight distribution and viscosity, the CTP was mixed with ethanol before the consecutive nitric acid and thermal treatments. The precursor pitches with ethanol, nitric acid, and thermal treatments were easily spinnable, and their spinning and carbon fiber properties were compared to those of air blowing and thermal treated CTP.