• Title/Summary/Keyword: Softening Point

Search Result 167, Processing Time 0.025 seconds

Development and Evaluation of Cold-applied Crack Sealant for Pavement Maintenance (도로포장 보수용 상온식 균열실링 재료의 개발 및 평가)

  • Kim, Yeong Min;Jeong, Kyu Dong;Lee, Kang Hoon;Im, Jeong Hyuk
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2017
  • PURPOSES: The objectives of this study are to develop a new cold-applied crack sealant and to evaluate its properties and field applicability by comparing with other conventionally used crack sealants. METHODS : A new cold-applied crack sealant was developed by using neoprene latex to improve material properties. The fundamental properties such as viscosity, residue %, penetration, and softening point of the developed crack sealant were tested by TxDOT criteria to evaluate crack sealing capability. Moreover, the performance of the developed cold-applied crack sealant was evaluated under both laboratory and field conditions. In the laboratory, the bond property was evaluated using the developed cold-applied crack sealant and conventional hot-applied crack sealant by the bond-properties test standardized under ASTM D 6690. In the field, test sections were constructed on three areas: a trunk road, bus-only lane, and motorway, with the developed crack sealant and three conventional crack sealants. After construction, early field-inspection was performed on the test sections. RESULTS AND CONCLUSIONS : Overall, the developed cold-applied crack sealant demonstrates reasonable storage stability, durability, and bond property compared to conventional hot-applied crack sealants. From the test sections, it was established that the developed cold-applied crack sealant does not pose construction issues. Moreover, the early performance was verified through field inspection. However, as the field inspection was conducted a week after the construction, it is necessary to conduct an inspection of performance from a long-term point of view.

Load Bearing Capacity Evaluation of New Lattice Girder by Laboratory Test (실내시험에 의한 새로운 격자지보재의 하중지지력 평가)

  • Choi, Young-Nam;Jang, Yeon-Soo;Kim, Dong-Gyu;Bae, Gyu-Jin
    • Land and Housing Review
    • /
    • v.2 no.2
    • /
    • pp.183-188
    • /
    • 2011
  • Recently, the depth of tunnel constructed is getting deeper, which increases difficulty in construction works. Deliberate tunneling techniques are needed as the span and length of tunnels are increased. As one of the technical developments for tunnel, U-shaped and reinforced spider lattice girders are developed by optimizing the spider used in 95mm lattice girder as tunnel steel ribs. In order to evaluate the load bearing capacity of the lattice girder, the 4-point flexural tests are carried out. For the laboratory tests, straight specimens are made for the existing lattice girder and the new lattice girder. The results of the flexural tests showed that the maximum load bearing capacity of the new lattice girders was higher than the traditional one. The load-displacement behavior of the test specimens showed the elasto-plastic behavior in the existing lattice girder and the stress softening behavior in the new lattice girder. It was found that the load bearing capacities are changed depending on the location of the loading points.

A Literature Study of Gait (보행(步行)에 관(關)한 문헌적(文獻的) 고찰(考察))

  • Kim, Bum-Chol;Keum, Dong-Ho;Lee, Myeong-Jong
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.5
    • /
    • pp.79-95
    • /
    • 1996
  • When we see normal gait, gait cycle is seperated as stance phase and swing phase. It needs 6 determinant of gait of pelvic rotation, pelvic tilt, knee joint of stance phase, ankle and foot motion, ankle and knee motion, and pelvic movement to be accomplished. In addition, a joint and muscle action is accomplished biomechanically at the same time with its gait cycle. In oriental medicine, the relationships between chang-fu physiology and meridian physiology are summaried as follows ; ${\bullet}$ chang-fu physiology : Spleen manages the extremities. Liver manages soft tissues. Liver stores blood. Kidney stores essences. Kidney manages bones. ${\bullet}$ meridian physiology : The Leg Greater Yang Meridian and meridian soft tissues The Leg Yang-Myeong Meridian and meridian soft tissues The Leg Lesser Yang Meridian and meridian soft tissues The Leg Greater Yin Meridian and meridian soft tissues The Leg Lesser Yin Meridian and meridian soft tissues The Leg Absolute Yin Meridian and meridian soft tissues Especially, we can find out relations between in a "blood supplied feet can walk well" that explains "blood regulations and by liver nourishing effects"that is the closest concept of muscle. Abnormal gaits are due to three causes as following; first, physical defect secoud, pain third, nervous system or instability of muscle. In oriental medicine, we can know relationship in "atrophy, numbness, stroke, convulsion, muscular dystrophy of knee, rheumatoid arthritis, five causes of infantile growing defects, five causes of softening, sprain". Especially, atrophy is the most important symptom. Gait evaluation should be emphasized where a point can walk 8 feet to 10 feet considering stride width, stride length, the body weight center, stride number, flexion, extension, rotation of a joint as a standard factor. The point is we should find out something strange in a patient's side, front and back view. After that we should find out its cause as an index that we can observe abnormal findings in a joint and muscle.

  • PDF

A Study on Isoelectric Point and Softness of an Ethylene Oxide Adducted Amphoteric Surfactant (에틸렌 옥사이드가 부가된 양쪽성 계면활성제의 등전점 및 유연력에 관한 연구)

  • Lim, JongChoo;Park, JunSeok;Han, DongSung;Kim, JiSung;Lee, Seul;Mo, DaHee;Lee, JinSun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.521-528
    • /
    • 2012
  • In this study, we analyzed the physical properties of an ethylene oxide adducted amphoteric surfactant such as critical micelle concentration, surface tension, interfacial tension, contact angle, viscosity and phase behavior. The dual function characteristics of an amphoteric surfactant were investigated by determining an isoelectric point, which were attained using zeta potential measurements and quartz crystal microbalance (QCM) experiments. The isoelectric points of DE3-OSA82-AO, DE5-OSA82-AO and DE9-OSA82-AO surfactant systems determined by zeta potential measurements were 6.97, 6.93 and 7.10 respectively and they are in good agreement with the isoelectric point values measured by QCM experiments. The frictional property measured using an automated mildness tester showed that the DE-OSA82-AO surfactant could provide a good softening effect at neutral condition.

Properties and Structures of Bi2O3-B2O3-ZnO Glasses for Application in Plasma Display Panels Rib (PDP Rib용 Bi2O3-B2O3-ZnO계 유리의 물성과 구조)

  • Jin, Young-Hun;Jeon, Young-Wook;Lee, Byung-Chul;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.2
    • /
    • pp.184-189
    • /
    • 2002
  • This study, compared with data of PbO-base glass system is a part of new glass composition design with Bi-base composition for PDP Rib. As $Bi_2O_3-B_2O_3-ZnO$ glass composition including Bi, which have similar density value and work facility to PbO, properties of softening point, thermal expansion coefficient, chemical durability, dielectric constant, and structural changing by XPS were investigated. $Bi_2O_3-B_2O_3-ZnO$ glass system, added 50∼80 wt% $Bi_2O_3$ widely, were presented 400∼480$^{\circ}C$ softening temperature, $68{\sim}72{\times}10^{-7}/^{\circ}C$ thermal expansion coefficient and 13∼25 dielectric constant. These results were showed similar physical properties with Pb-base glass system of same composition content, application possibility as starting composition of rib material was identified through micro-control of components and physical properties. The bonding energy of $O_{1s}$ as the $Bi_2O_3$ content decreasing was increased and full width at half-maximum (FWHM) was decreased, which is caused by non-bridging oxygen increasing.

Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film (다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.503-509
    • /
    • 2019
  • The demand for smaller, faster, and multi-functional mobile devices in increasing at a rapidly increasing rate. In response to these trends, Stacked Chip Scale Package (SCSP) is used widely in the assembly industry. A film type adhesive called die attach film (DAF) is used widely for bonding chips in SCSP. The DAF requires high flowability at high die attachment temperatures for bonding chips on organic substrates, where the DAF needs to feel the gap depth, or for bonding the same sized dies, where the DAF needs to penetrate bonding wires. In this study, the mixture design of experiment (DOE) was performed for three raw materials to obtain the optimized DAF recipe for low elastic modulus at high temperature. Three components are acrylic polymer (SG-P3) and two solid epoxy resins (YD011 and YDCN500-1P) with different softening points. According to the DOE results, the elastic modulus at high temperature was influenced greatly by SG-P3. The elastic modulus at $100^{\circ}C$ decreased from 1.0 MPa to 0.2 MPa as the amount of SG-P3 was decreased by 20%. In contrast, the elastic modulus at room temperature was dominated by YD011, an epoxy with a higher softening point. The optimized DAF recipe showed approximately 98.4% pickup performance when a UV dicing tape was used. A DAF crack that occurred in curing was effectively suppressed through optimization of the cure accelerator amount and two-step cure schedule. The imizadole type accelerator showed better performance than the amine type accelerator.

Quality Evaluation of Minimally Processed Asian Pears (신선편의 식품화된 신고배의 저장 중 이화학적 품질변화)

  • Kim, Gun-Hee;Cho, Sun-Duk;Kim, Dong-Man
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1523-1528
    • /
    • 1999
  • The consumer's demands for minimally processed fruits and vegetables have been increased rapidly because of its convenient handling, fresh-like quality as well as producing less wastes from the environmental point of view. Asian pears which are one of the main fruits widely produced and consumed in Korea easily lost their characteristics due to browning and softening after cutting. The objective of this study is to investigate the effects of various treatments on delaying deterioration of sliced Asian pears. 'Shingo' pear slices were treated with various solutions $(1%\;NaCl,\;0.2%\;L-cysteine,\;1%\;CaCl_2\;or\;1%\;calcium\;lactate)$ and were packaged with low density polyethylene $(LDPE,\;60\;{\mu}m)$, ceramic $(CE,\;60\;{\mu}m)$ or vacuum $(Ny/PE,\;80\;{\mu}m)$ film at $20^{\circ}C\;and\;0^{\circ}C$. In order to evaluate the quality of packaged sliced pears, quality index was determined in terms of color, firmness, soluble solids, titratable acidity. ascorbic acid, changes of gas composition, microbial test, and sensory quality. The results showed that sliced 'Shingo' pears packaged with CE and vacuum film maintained better quality than with LDPE at $0^{\circ}C\;and\;20^{\circ}C$. To retard browning and softening. 0.2% L-cysteine and 1% NaCl solutions applied for 1 minute were effective to reduce surface browning of sliced pears, and 1% $CaCl_2$ was the most effective to prevent softening.

  • PDF

Characteristics of Opal Glass by Calcium Phosphate Opacifier for a LED Light Diffuser (Calcium Phosphate 유백제 투입량에 따른 LED Diffuser용 유백유리의 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.75-81
    • /
    • 2013
  • We fabricated translucent opal glass to replace the polycarbonate diffuser in LED lighting systems in order to solve the durability problem. Batch materials of opal glass with a composition of calcium phosphate were created and melted at $1550^{\circ}C$, and the effect of opaqueness was identified by an addition of 1~7% calcium phosphate as an opacifier raw material. As a result, translucent opal glass was obtained by the melting of the mixed batch materials with a composition of more than 5% calcium phosphate glass at $1550^{\circ}C$ for 2 hrs, which had excellent optical properties for the diffuser of a LED lighting system with no dazzling from direct light by a high haze value exceeding 90% and a low parallel transmittance value of about 5%. For the thermal properties, the thermal expansion coefficient was found to be $5.6{\sim}5.9{\times}10^{-6}/^{\circ}C$ and the softening point was $874{\sim}884^{\circ}C$. In addition, good thermal properties such as good thermal shock resistance and feasibility for use with a general manufacturing process during the forming of glass tubes and bulbs were noted. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting due to its high heat resistance and high durability as a replacement for a polycarbonate diffuser.

Development and Characterization of Translucent Opal Glass for Diffuser of LED Lighting (LED 조명용 반투명 유백유리 Diffuser 조성 개발 및 특성)

  • Ku, Hyun-Woo;Lim, Tae-Young;Hwang, Jonghee;Kim, Jin-Ho;Lee, Mi-Jai;Shin, Dong Wook
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.650-657
    • /
    • 2012
  • For the purpose of improving the durability problem, translucent opal glass was fabricated as a substitute for the polycarbonate diffuser of LED lighting. Calcium phosphate was used as an opacifier of opal glass and melted in an electric furnace. The opaque effect was identified according to the change of the cooling procedure. As results, translucent opal glass was obtained by the melting of a batch with a composition of 3.8% calcium phosphate at $1550^{\circ}C$ for 2 hrs and then the cooling of the material in the furnace. For the cooling condition of the glass sample, HTCG (High Temperature Cooled Glass) was found to have better optical properties than LTAG (Low Temperature Annealed Glass). It had excellent optical properties for a diffuser of LED lighting, with no dazzling from direct light due to its high haze value of over 99% and low parallel transmittance value of under 1%. For the thermal properties, it had an expressed thermal expansion coefficient of $5.7{\times}10^{-6}/^{\circ}C$ and a softening point of $876^{\circ}C$; it also had good thermal properties such as good thermal shock resistance and was easy to apply to the general manufacturing process in the forming of glass tubes and bulbs. Therefore, it is concluded that this translucent opal glass can be used as a glass diffuser material for LED lighting with high heat resistance and high durability; this material is suitable as a substitute for polycarbonate diffusers.

Chemical Bonding and Surface Electronic Structures of Pt3Co (111), Pt3Ni (111) Single Crystals

  • Kim, Yong-Su;Jeon, Sang-Ho;Bostwick, Aaron;Rotenberg, Eli;Ross, Philip N.;Stamenkovic, Vojislav R.;Markovic, Nenad M.;Noh, Tae-Won;Han, Seung-Wu;Mun, Bong-Jin Simon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.139-139
    • /
    • 2012
  • With angle resolved photoemission spectroscopy (ARPES), the surface electronic band structures of Pt3Co (111) and Pt3Ni (111) single crystals are investigated, which allow to study the bonding interaction between chemically absorbed atomic oxygen and its surfaces. The d-band electrons of subsurface TM are separated from the direct chemical bonding with atomic oxygen. That is, the TM does not contribute to direct chemical bonding with oxygen. From the density functional theory (DFT) calculations, it is identified that the main origin of improved oxygen absorption property, i.e. softening of Pt-O bonding, is due to the suppression of Pt surface-states which is generated from change of interlayer potential, i.e. charge polarization, between Pt-top and TM-subsurface. Our results point out the critical roles of subsurface TM in modifying surface electronic structures, which in turn can be utilized to tune surface chemical properties.

  • PDF