• Title/Summary/Keyword: Soft molding

Search Result 55, Processing Time 0.031 seconds

Manufacture of Permalloy Soft Magnets by Powder Injection Molding

  • W.Y. Jeung;Park, J.W.
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2001
  • Permalloy soft magnets have been produced by the powder injection molding process. Rheological characteristics of mixtures, debinding conditions, and the magnetic properties of permalloy after sintering have been investigated. A permalloy soft magnet with a permeability of 14200 could be obtained by preparing a mixture with a powder loading of 65.4 vol % and a PP/PEG binder systems solvent extraction, thermal debinding, and subsequent sintering at 1350$\^{C}$ in hydrogen. The permalloy soft magnet sintered in hydrogen had 95% of theoretical density and a magnetic induction of 13.2 kG in an applied magnetic field of 50 Oe.

Manufacturing of the Permalloy Soft Magnet by Powder Injection Molding Process

  • W. Y. Jeung;Park, J. W.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.217-227
    • /
    • 2000
  • The permalloy soft magnet was produced by powder injection molding process. Rheological characteristics of mixtures, debinding conditions and the magnetic properties of permalloy after sintering ware investigated. The permalloy soft magnet with a permeability of 14200 could be obtained by preparing a mixture with a powder loading of 65.4 vol.% and PP/PEG binder system, solvent extraction, thermal debinding and subsequent sintering at 1350 $^{\circ}C$ in hydrogen. The permalloy soft magnet sintered in hydrogen showed a 95 % of theoretical density and a magnetic induction of 13.2 kG at the applied magnetic field of 50 Oe

  • PDF

Effect of Residual Impurity on Magnetic Properties of the Permalloy Soft Magnet by Powder Injection Molding (분말사출성형으로 제조된 퍼말로이 연자성체에서 잔류 불순물이 자기특성에 미치는 영향)

  • 정원용;최준환;정우상
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.291-296
    • /
    • 2000
  • The manufacturing method of permalloy soft magnet with the Ni contents of 46.6 and 47.2 wt% was investigated by powder injection molding technology. The magnetic properties of permalloy were greatly affected on the residual carbon and oxygen content of the sintered magnet. Solvent extraction and thermal debinding process to minimize the residual carbon content in sintered magnet were developed by controlling the debinding atmosphere. The residual carbon content depends on the debinding condition of the binder system for powder injection molding and the residual oxygen content on the sintering atmosphere. The sintered magnet produced by powder injection molding process had a 50 ppm. residual carbon, 150 ppm. residual oxygen. The coercivity and maximum relative permeability of permalloy soft magnet were 0.46 Oe and 14,600 respectively.

  • PDF

High Precision Molding Process for Barrier Ribs of PDP by using a Soft Mold and a Green Sheet

  • Ryu, Seung-Min;Park, Lee-Soon;Yang, Dong-Yol
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.316-319
    • /
    • 2007
  • In this paper, high precision molding process was developed using a soft mold to fabricate fine closed-types of the barrier ribs for PDP. A green sheet was employed to fabricate the barrier ribs in this process. The soft mold with good demolding characteristics was replicated from a master mold. An optimal forming load which would not fracture the soft mold was also determined. The barrier ribs of rectangular type with upper width of $30\;{\mu}m$ would be fabricated by this process.

  • PDF

Formation of barrier ribs for PDP by injection molding method

  • Choi, Hak-Nyun;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.388-390
    • /
    • 2003
  • Paste micro-injection molding process was applied for fabrication of barrier ribs of PDP in an attempt to reduce processing steps and materials loss during the processing. For the paste, a thermally curable one was used and for the mold, a polymeric soft mold was used. It was demonstrated that the micro-molding process can be used successfully in producing barrier ribs of PDP.

  • PDF

A study on structure and separation orientation of fiber-reinforced thermoplastic sheet (섬유강화 플라스틱 복합판의 구조와 분리.배향에 관한 연구)

  • Lee, Dong-Gi;Cho, Kwang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.104-113
    • /
    • 1993
  • Characteristics of fiber-reinforced thermoplastic sheet depend on the quantity and shape of fibers. During a molding process of composites, the fiber-maxtrix separation and fober orientation are caused by the flow during the molding process. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation-orientation and molding conditions. The correlation between the separation and the orientation have to be clarified for designing the fiber structure. In this paper, the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is defined and measured by the image processing using soft X-rayed photograph and image scammer. Correlation between the degree of nonhomogeneity and the orientation function is discussed.

  • PDF

Effect of Mold Temperature on the Separation and the Orientation during Compression Molding of Fiber-Reinforced Polymeric Composites (섬유강화 고분자 복합재료의 압축성형에 있어서 분리 ${\cdot}$ 배향에 미치는 금형온도의 영향)

  • Lee, Dong-Gi;Han, Gil-Young;Kim, E-Gon
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.123-132
    • /
    • 1995
  • During compression molding of fiber-reinforced polymeric composites, microstructural changes such as the fiber-matrix separation and the fiber orientation are occurred by the flow of composite materials. Since the nonhomogeneity and anisotropy of composites are caused by the separation and orientation of fibers. On the other hand, the separation and the orientation of fibers are inseparably related to each other. In this paper the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is measured by the image processing using soft X-rayed photograph and image scanner. We study effects of the mold temperature on the degree of nonhomogeneity and the orientation function.

  • PDF

The analysis of the single transformer by using F.E.M (F.E.M.을 이용한 단상 변압기의 전자력 해석)

  • Lee, Hyun-Jin;Huh, Chang-Su;Jeong, Jung-Il;Cho, Han-Goo;Park, Yeong-Doo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.855-858
    • /
    • 2001
  • The single transformer appeared the electro-magnetic force must be constructed to support it. it must construct the single transformer to supporting the electro-magnetic force appeared by the cut-off current. the problem is that the electro-magnetic occurs the modification of the single transformer and an serious accident. In the case of the molding-transformer, the part of the molding cast used in the construction occurs the crack, because of the strong force. therefore, in this paper, the molding material used in the molding-transformer is settled by comparing the results from commercial soft ware of F.E.M and a out-equipment circuit.

  • PDF

Rapid Tooling for Resin Transfer Molding of Composites Part (복합재료 부품의 RTM 공정을 위한 쾌속금형의 제작)

  • Kim, S.K.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.436-440
    • /
    • 2006
  • A rapid tooling (RT) method fur the resin transfer molding (RTM) have been investigated. We fabricated a curved I-beam to verify the method. After creating a three-dimensional CAD model of the beam we fabricated a prototype of the model using a rapid prototyping (RP) machine. A soft mold was made using the prototype by the conventional silicone mold technique. The procedure and method of mold fabrication is described. The mold was cut into several parts to allow easier placement of the fiber preform. We conducted the resin transfer molding process and manufactured a composite beam with the mold. The preform was built by stacking up eight layers of delicately cut carbon fabrics. The fabrics were properly stitched to maintain the shape while placement. The manufactured composites beam was inspected and found well-impregnated. The fiber volume ratio of the fabricated beam was 16.85%.