• Title/Summary/Keyword: Soft clay ground

Search Result 388, Processing Time 0.019 seconds

Evaluation of Spatial Distribution of Secondary Compression of Songdo Marine Clay by Probabilistic Method (확률론적 방법을 이용한 인천송도지반 이차압축침하량의 공간적 분포 평가)

  • Kim, Dong-Hee;Bae, Kyung-Doo;Ko, Seong-Kwon;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.25-35
    • /
    • 2010
  • Settlement at reclamation area caused by secondary compression should be considered using spatial evaluating method because the thickness of consolidation layer varies at every location. Probabilistic method can be implemented to evaluate uncertainty of spatial distribution of secondary compression. This study spatially evaluated mean and standard deviation of secondary compression in the overall analyzing region using spatial distribution of consolidation thickness estimated by ordinary kriging method and statistical values of soil properties. And then, the area where secondary compression exceeds a design criterion at the specific time was evaluated using probabilistic method. It was observed that the area exceeding the design criterion increased as the variability of $C_{\alpha}/(1+e_o)$ increased or the probabilistic design criterion 0: decreased. It is considered that the probabilistic method can be used for the geotechnical design of soft ground when a probabilistic design criterion is established in the specification.

An Analysis of the Settlement Behavior of Soft Clayey Ground Considering the Effect of Creep during the Primary Consolidation (1차압밀과정중의 크리프의 영향을 고려한 연약 점성토지반의 침하거동 해석)

  • Baek, Won-Jin;Matsuda, Hiroshi;Choi, Woo-Jung;Kim, Chan-Kee;Song, Byung-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • This paper is performed to examine the effect of creep during the primary consolidation and the applicability of the Yin's EVP (Elasto-Visco-Plastic) model. In ordinary consolidation theories using the elastic model, the primary consolidation process can be expressed but the secondary consolidation process cannot. It is due to the viscosity, which can express the secondary consolidation, and is sometimes related to the scale effect (difference of the thickness of clay layer between laboratory sample and field condition) such as hypotheses Type A and Type B shown by Ladd et al. (1977). Usually, the existence of the creep during the primary consolidation has been conformed and the Type B is well acceped. On the other hand, from the large-scaled consolidation tests the intermediate characteristic between Type A and Type B was proposed as Type C by Aboshi (1973). In this study, to clarify the effect of creep on the settlement-time relation during the primary consolidation in detail, Type B consolidation tests were performed using the separate-type consolidation test apparatus for a peat and clay. Then the test results were analyzed by using Yin's EVP Model (Yin and Graham, 1994). In conclusion, followings were obtained. At the end of primary consolidation, the compression for the subspecimens should not be the same because of the difference of the excess pore water pressure dissipation rate. And the average settlement measured by the separate-type consolidometer coincides with the analyzed one using the Yin's EVP model. As for the dissipation of the excess pore water pressure, however, the measured excess pore water pressure dissipates faster compared with the Yin's model.

Analysis of the Relationship between Concrete Slab Track Life and Secondary Compression Characteristics in Soft Clay (점토의 2차 압축특성과 콘크리트궤도 수명과의 상관성 분석)

  • Lee, Sang-Cheol;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.195-203
    • /
    • 2016
  • Concrete slab track was applied to the Gyeoungbu High Speed Railroad step 2 and the Honam High Speed Railroad. Concrete slab track incurs higher construction cost and lower maintenance cost than existing gravel track. For these reasons, the use of concrete slab track has increased in Korea. The biggest problem in the use of concrete slab track is repairing damage from settlement that can occur while trains are in service. High speed railroad design standards require allowable residual settlement of concrete slab track of less than 25mm. In order to satisfy the requirement of long term stability of concrete slab track, it is necessary to manage the secondary compression settlement within the allowable residual settlement. This study is to evaluate the secondary compression settlement with the variation of the secondary compression index, thickness of soft ground, and concrete slab track life. Statistical analysis is performed to determine the probability of distribution of areas where serious problems will be caused after the concrete slab track is constructed.

A Calculation of Compression Index of the South Coast Soft Clay Utilizing Field Measurement (계측자료를 활용한 남해안 연약 점성토의 압축지수 산정)

  • Lee, Changouk;Park, Choonsik;Kwon, Hyeonjin;Kim, Jonghwan
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.6
    • /
    • pp.23-30
    • /
    • 2015
  • This study analyzed degree of disturbance, using specimens by laboratory test with large block specimens and piston samplers collected from the Korea's two typical soft ground districts: South coast Gwangyang and Yangsan. To assess the characteristics of compression index of laboratory test incurred by disturbance, the compression index of laboratory test was compared with the back analysis compression index resulting from the analysis of the measured settlement. The analysis of specimen disturbance of the laboratory test results with the piston specimens of the two districts found that the qualities of most specimens were poor and the settlement predicted by the laboratory test compression index was underestimated. The analysis of test material taken from nearby areas proved that the disturbance degrees of large block specimens were lower than that of the piston specimens. The hyperbolic method, Hoshino method, Asaoka method, and ${\sqrt{S}}$ method, all of which are predictive methods using measured settlement, were employed to reach a conclusion that reliabilities of each predictive method except predictive material of a few points were the same. To compensate the disturbance effects on compression index of the piston specimens, we suggested a new modification formula that estimates compression index of piston specimens, using Schmertmann's corrected compression index, and back analysis compression index from the analysis of predictive settlement.

A Study on the Construction method of Stamped earthen wall (판축토성(版築土城) 축조기법(築造技法)의 이해(理解) - 풍납토성(風納土城) 축조기술(築造技術)을 중심(中心)으로 -)

  • Shin, Hee-kweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.102-115
    • /
    • 2014
  • The stamped earth method is a typical ancient engineering technique which consists of in-filling wooden frame with layers of stamped earth or sand. This method has been universally used to construct earthen walls and buildings, etc. The purpose of this article is to understand the construction method and principles of the stamped earthen wall through analysis of various construction techniques of Pungnaptoseong Fortress(Earthen Fortification in Pungnap-dong). First of all, the ground was leveled and the foundations for the construction of the earthen wall were laid. The underground foundation of the earthen walls was usually constructed by digging into the ground and then in-filling this space with layers of mud clay. Occasionally wooden posts or paving stones which may have been used to reinforce the soft ground were driven in. The method of adding layers of stamped earth at an oblique angle to either side of a central wall is the most characteristic feature of Pungnaptoseong Fortress. Even though the traces of fixing posts, boards, and the hardening of earth - all signatures of the stamped earth technique - have not been identified, evidence of a wooden frame has been found. It has also been observed that this section was constructed by including layers of mud clay and organic remains such as leaves and twigs in order to strengthen the adhesiveness of the structures. The outer part of the central wall was constructed by the anti-slope stamped earth technique to protect central wall. In addition a final layer of paved stones was added to the upper part of the wall. These stone layers and the stone wall were constructed in order to prevent the loss of the earthen wall and to discharge and drain water. Meanwhile, the technique of cementing with fire was used to control damp and remove water in stamped earth. It can not be said at present that the stamped earth method has been confirmed as the typical construction method of Korean ancient earthen walls. If we make a comparative study of the evidence of the stamped earth technique at Pungnaptoseong Fortress with other archeological sites, progress will be made in the investigation of the construction method and principles of stamped earthen wall.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Compressive Strength Characteristics of Light-weight Air Foamed Soil Using Dredged Silty Soils (준설 실트질 점토를 이용한 경량기포혼합토의 압축강도 특성)

  • Kim, Donggyu;Yoon, Yeowon;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.5
    • /
    • pp.27-33
    • /
    • 2017
  • In this research, laboratory tests were carried out to investigate the engineering properties of Light-Weight Air Foamed Soil (LWAS) based on silty clays with the animal foaming agent and cement. LWAS has been used as an embankment material over soft ground for road and side extension of the existing road. In field, unit weight and flow value is measured right after producing in mixing plant in order to control the quality of LWAS, and laboratory tests are carried out to confirm the quality through compressive strength of LWAS as well. In this research, direct estimation of the specification requirement of strength using flow values in field is the main purpose of the study together with other characteristics. From the test results, it can be seen that flow values increase with the initial water content and unit weight increases with the depth due to material segregation. Compared to the upper specimen, lower end of 60 cm specimen shows about 2 times higher compressive strength. Relationship between flow values and normalized factor presented by Yoon & Kim (2004) was presented. With that relationship, compressive strength can be predicted from flow values in field. From the relationship, the normalized factor was calculated. Thereafter calculated compressive strengths according to the flow values were compared to measured strengths in the laboratory. The higher the initial water content of the dredged soil has, the better relationship between predicted and measured shows. Therefore it is necessary to predict the compressive strength in advance through the relationship between the flow value and the normalized factor to reflect it in the design stage.

Study on the Rational Construction Method Using Analysis of the Case Study of PHC Pile Foundation in Song-Do Area (송도지역 내 PHC 말뚝기초 적용사례분석을 통한 적정 시공방법 연구)

  • Lee, Byengho;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Song-Do international city is the area developed in large-scale land reclamation. Song-Do area consists of reclamation layer, sedimentary layer(loose silt, soft clay and sand alternating) and residual layer from the ground surface. Therefore, using pile foundation is inevitable to build structures safely. In this area, driven PHC piles have been generally constructed in terms of environmental and economic conditions. As a result of analyzing 4 sites in Song-Do district 5 and 7 recently, the method of driving pile has many problems because of existence of rigid soil in sedimentary layer and installation of more than 30m piles. In this case, when installing piles by drive after pre-boring up to appropriate depth, the results of constructability analysis were very good. And in the economic efficiency, although 4% of construction cost rose, it was a very slight increase in comparison with improvement of workability. In the case of the stability, more than 70% compared to the allowable stress of piles was satisfied through the load test. As a result, when PHC piles is installed in Song-Do district, the proper construction method is that piles are located at bearing layer after boring rigid sand layer.