• Title/Summary/Keyword: Soft body Simulation

Search Result 20, Processing Time 0.03 seconds

Iguana motion synthesis using soft body simulation (연체 시뮬레이션 기반 이구아나 동작 생성)

  • Moon, Jaeseok;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • In this paper, we suggest a method to simulate high-quality iguana animation by using low-quality motion capture data. Iguana motion data captured using a small number of markers cannot express its movement precisely, and even with a realistic skin mesh, it shows unnatural movement because of limited degrees of freedom. In order to solve this problem, we propose to simulate a natural and flexible movement by applying a soft-body simulation technique which models the movement of an iguana according to muscle forces and body's elastic forces. We construct a motion graph from the motion capture data to describe the iguana's various movements, and utilize it to select appropriate movements when the iguana moves. A target point on a terrain is set from the user's input, and a graph path is planned based on it. As a result, the input movement of iguana walking on a flat ground transforms to a movement that is adapted in an online manner to the irregular heights of the terrain. Such a movement is used to calculate the ideal muscle lengths that are needed for soft-body simulation. Lastly, a tetrahedral mesh of the iguana is physically simulated to adapt to various situations by applying a soft-body simulation technique.

Analysis of Golf Swing Motion and Applied Loads on the Human Body Using Soft-$Golf^{TM}$ Club (소프트 골프 클럽을 이용한 골프 스윙 동작과 인체 작용 하중 분석)

  • Kwak, Ki-Young;So, Ha-Ju;Kim, Sung-Hyeon;Kim, Nam-Gyun;Kim, Dong-Wook
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.472-478
    • /
    • 2011
  • The purpose of this study was to analyze the kinetic effect of Soft-$golf^{TM}$ instrument on the human body structure. To analyze the kinetic effect of Soft-$golf^{TM}$ instrument, Golf swing using Soft-$golf^{TM}$ instrument and regular golf instrument was captured. And then Upper limbs and lumbar joint torques was calculated via computer simulation. Five man participated this study. Subjects performed golf swing using a regular golf and Soft-$golf^{TM}$ instrument. Golf swing motion was captured using three position sensor, active infrared LED maker and force plate. Golf swing model was generated and simulated using ADAMS/LifeMOD program. As a results, joint torque during Soft-golf swing were lower than regular golf swing. Thus soft-golf swing have joint load lower than regular golf swing and contribute to reduce joint injury.

Kinematic and Kinetic Analysis of the Soft Golf Swing using Realistic 3D Modeling Based on 3D Motion Tracking

  • Kim, Yong-Yook;Kim, Sung-Hyun;Kim, Nam-Gyun
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.744-749
    • /
    • 2007
  • Kinematic and kinetic analysis has been performed for Soft Golf swings utilizing realistic three dimensional computer simulations based on three dimensional motion tracking data. Soft Golf is a newly developed recreational sport in South Korea aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. This paper tries to look into kinematic and kinetic aspects of soft golf swings compared to regular golf swing and find the advantages of lighter Soft Golf clubs. For this purpose, swing motions of older aged participants were captured and kinematic analysis was performed for various kinematic parameters such as club head velocity, joint angular velocity, and joint range of motions as a pilot study. Kinetic analysis was performed by applying kinematic data to computer simulation models constructed from anthropometric database and the measurements from the participants. The simulations were solved using multi-body dynamics solver. Firstly, the kinematic parameters such as joint angles were obtained by solving inverse dynamics problem based on motion tracking data. Secondly, the kinetic parameters such as joint torques were obtained by solving control dynamics problem of making joint torque to follow pre-defined joint angle data. The results showed that mechanical loadings to major joints were reduced with lighter Soft Golf club.

Study on Steering Ratio of Four-Row Rigid Tracked Vehicle on Extremely Cohesive Soft Soil Using Numerical Simulation (수치해석을 이용한 연약지반 4열 강체 무한궤도 차량의 최적 선회비 연구)

  • Kim, Hyung-Woo;Lee, Chang-Ho;Hong, Sup;Choi, Jong-Su;Yeu, Tae-Kyeong;Min, Cheon-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.81-89
    • /
    • 2013
  • This paper considers the steering characteristics of a four-row tracked vehicle crawling on extremely cohesive soft soil, where each side is composed of two parallel tracks. The four-row tracked vehicle (FRTV) is assumed to be a rigid body with 6-DOF. A dynamic analysis program for the tracked vehicle is developed using the Newmark-${\beta}$ method based on an incremental-iterative scheme. A terra-mechanics model of an extremely cohesive soft soil is implemented in the form of the relationships of the normal pressure to the sinkage, the shear resistance to the shear displacement, and the dynamic sinkage to the shear displacement. In order to investigate the steering characteristics of the four-row tracked vehicle, a series of dynamic simulations is conducted with respect to the distance between the left and right tracks (pitch), steering ratios, driving velocity, reference track velocity, lengths of the tracks, and properties of the cohesive soft soil. Through these numerical simulations, the possibility of using a kinematic steering ratio is explored.

Numerical simulation of concrete abrasion induced by unbreakable ice floes

  • Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • This paper focuses on the numerical simulation of ice abrasion induced by unbreakable ice floe. Under the assumption that unbreakable floes behave as rigid body, the Discrete Element Method (DEM) was applied to simulate the interaction between a fixed structure and ice floes. DEM is a numerical technique which is eligible for computing the motion and effect of a large number of particles. In DEM simulation, individual ice floe was treated as single rigid element which interacts with each other following the given interaction rules. Interactions between the ice floes and structure were defined by soft contact and viscous Coulomb friction laws. To derive the details of the interactions in terms of interaction parameters, the Finite Element Method (FEM) was employed. An abrasion process between a structure and an ice floe was simulated by FEM, and the parameters in DEM such as contact stiffness, contact damping coefficient, etc. were calibrated based on the FEM result. Resultantly, contact length and contact path length, which are the most important factors in ice abrasion prediction, were calculated from both DEM and FEM and compared with each other. The results showed good correspondence between the two results, providing superior numerical efficiency of DEM.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Design and Analyses of Vibration Driven Electromagnetic Energy Harvester with High Power Generation at Low Frequency (저주파수에서 고출력을 갖는 진동형 전자기식 에너지 하베스터의 설계 및 해석)

  • Chung, Gwiy-Sang;Ryu, Kyeong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.25-29
    • /
    • 2011
  • This paper describes the design and analyses of vibration driven electromagnetic energy harvester with high power generation which is suitable for supplying power generator from human body motion. The proposed harvester consists of magnet, coil, and SM (Soft magnetic Material). In order to generate more induced voltage, the SM to concentrate flux lines from end of magnetic poles was arranged into insert moving magnet. Each model was designed and analyzed by using ANSYS software to simulation. The maximum power is generated when load resistance of $1303\;{\Omega}$ is equal to coil resistance. The generated maximum power of for harvesters with SM is $677.85\;{\mu}W$ and 5.46 times higher than without SM at 6 Hz vibration frequency.

A Study on the Vehicle Dynamic Characteristic of Displacement Sensitive Shock Absorber (변위감응형 충격흡수기의 차량 동력학적 특성에 관한 연구)

  • 이춘태;곽동훈;정봉호;이진걸
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.187-195
    • /
    • 2003
  • The performance of shock absorber is directly related to the car behaviour and performance, both for handling and ride comfort. The displacement sensitive shock absorber has two modes of damping force (i.e. soft and hard) according to the position of piston. In this study, a mathematical nonlinear dynamic model is introduced to predict the performance of displacement sensitive shock absorber. Especially in this paper, the transient zone is considered and the simulation result is well fit with experimental data. And the vehicle dynamic characteristic of displacement sensitive shock absorber is presented using quarter car simulation model. The simulation results of frequency response are compared with passive shock absorber.

3D Online Marshmallow Simulation Game for Target Value Design

  • Kim, Suryeon;Mainardi, Pete;Jeong, H. David;Rybkowski, Zofia;Seo, Jinsil Hwaryoung
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.661-668
    • /
    • 2022
  • Various lean design and construction methods such as target value design, pull planning, value stream mapping have successfully transformed the commercial building construction industry into achieving improved productivity, higher design and construction quality, and meeting the target values of construction projects. Considering the significant advantages of lean, the accelerated dissemination and adoption of lean methods and tools for construction is highly desirable. Currently, the lean design and construction body of knowledge is imparted primarily through publications and conferences. However, one of the most effective ways to impart this soft knowledge is through getting students and trainees involved in hands-on participatory games, which can quickly help them truly understand the concept and apply it to real-world problems. The COVID-19 Pandemic has raised an urgent need of developing virtual games that can be played simultaneously from various locations over the Internet, but these virtual games should be as effective as in-person games. This research develops an online 3D simulation game for Target Value Design that is as effective as in-person games or possibly better in terms of knowledge capture and retention and enjoyable environment and experience. The virtual game is tested on volunteers using feedback from pre-and post- simulation surveys to evaluate its efficacy.

  • PDF

Hybrid Elastic Model for Volumetric Deformation and Real-time Haptic Simulation (볼륨 변형과 실시간 햅틱 시뮬레이션을 위한 하이브리드 탄성체 모델)

  • Cho, Jae-Hwan;Kim, Seok;Park, Jin-Ah
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.68-73
    • /
    • 2009
  • As various haptic algorithms and haptic equipments have developed, the computer simulation includes the haptic simulation. Basically, the haptic simulation requires very fast refresh rate approximately 1000 Hz. The traditional haptic simulations have satisfied that requirement by simplifying the target model. In soft body simulation, simplifying the deformation is not good because the visual feedback is important. Separating haptic model from deformable model can be solution of that problem. However, the user may feel a subtle distiction because the relationship between two models are not clear. In this paper, we propose the hybrid model to manipulate haptic rendering and deformation and define the relationship between two models.

  • PDF