• Title/Summary/Keyword: Soft Power

Search Result 1,250, Processing Time 0.033 seconds

Characteristic of Three-Phase Voltage Type Soft-Switching Inverter using the Novel Active Auxiliary Resonant DC Link Snubber (새로운 액티브 보조 공진 DC 링크 스너버를 이용한 3상 전압형 소프트 스위칭 인버터의 특성)

  • Sung, Chi-Ho;Heo, Young-Hwan;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.114-121
    • /
    • 2016
  • This paper is Instant space vector PWM(Pulse Width Modulation)power conversion devices in switching power semiconductors from my generation to losses and switching when the voltage surge and current surge of electronic noise(EMI: Electro Magnetic Interference / RFI: Radio Frequency Interference)to effectively minimize the power soft-switching power conversion circuit topologies of auxiliary resonant DC tank for the purpose of high performance realization of the electric power conversion system by the high-speed switching of a semiconductor device(AQRDCT simultaneously : an active auxiliary resonance using auxiliary Quasi-resonant DC tank)DC link snubber switch has adopted a three-phase voltage inverter. AQRDCL proposed in this paper can reduce the effective and current peak stress of the power semiconductors of the auxiliary resonant snubber circuit compared to the conventional active-resonant DC link snubber, it is not necessary to install the clamp switch of the auxiliary resonant DC link, DC the peak current and power loss of the bus line can be reduced.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.

Characteristics analysis of PFC boost converter with soft switching for harmonics reduction (고조파 저감을 위한 소프트 스위칭 승압형 PFC컨버터의 특성해석)

  • 김봉규
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.150-154
    • /
    • 2000
  • This paper proposes PFC boost converter with soft switching for harmonics decrement and analyzes characteristics of PFC boost converter. In this technique power factor correction(PFC) is usually obtained by operating the PFC stage in the discontinuous current mode(DCM) Switching devices are operated for reducing current stress and electronical noise. As a result eliminate 3rd harmonic component and high power factor(PF) of the input line are verified by characteristics analysis and experimental results.

  • PDF

A Study on Soft Switching of Single-Stage PFC AC/DC Full Bridge Converter (Single-Stage PFC AC/DC Full Bridge Converter의 소프트 스위칭에 관한 연구)

  • 임경내;성병기;계문호;권순재;김철우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.401-404
    • /
    • 1998
  • This paper proposes a new soft switching single stage AC/DC full bridge converter with unit power factor and isolated output. This circuit shows that it is possible to combine the boost converter which is for PFC(Power Factor Correction) and full bridge converter which is for DC/DC converter. A simple auxiliary circuit which includes neither lossy components nor active switches eliminates ringing of secondary side of the transformer. The characteristics of the proposed circuit are investigated and the validity is verified by the simulation results.

  • PDF

New topology of Partial Resonant Type Buck-Boost Chopper (부분공진형 승.강압 초퍼의 새로운 토포로지)

  • 고강훈;라병훈;권순걸;구헌회;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.39-42
    • /
    • 1998
  • This paper is presented the Partial Resonant Soft Switching Mode Power Converter which is adapted the power converter having the partial resonant soft switching mode, that makes switches operated when the resonant current or voltage becomes zero by making the resonant circuit partially at turning on and off of the switches with suitable layout of the resonant elements and switch elements in the converter. Also, this paper includes the analysis and simulation of the Partial Resonant type Buck-Boost Chopper.

  • PDF

Comparison of Active-Clamp and ZVT Techniques Applied to Tapped-Inductor DC-DC Converter with Low Voltage and Bigh Current

  • Abe, Seiya;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.199-205
    • /
    • 2002
  • This paper compares three kinds of soft-switching circuits from viewpoints of surge suppression, load characteristic, and power efficiency for a tapped-inductor buck converter with low voltage and high current. As a result, these soft-switching techniques have achieved much higher efficiency of 80 % when compared with a hard-switching buck converter for the output condition of 1V and 20A.

Soft-switched, High Frequency Resonant AC-to-DC Rectifier with High Power Factor (영전류 스위칭과 높은 공진 주파수로 동작하는 교류-대-직류 역률개선 정류회로)

  • 최현칠;정영석;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.6
    • /
    • pp.916-926
    • /
    • 1994
  • A high frequency and soft-switched AC-to-DC rectifier employing a series-type resonant circuit is proposed to overcome the disadvantages of the conventional peak-rectifying circuit. Using the proposed rectifier, the high power factor and low harmonic currents are obtained in the AC line. Furthermore, several advantages such as the high power density and wide output voltage range can be available. Through the simulation and experimental results, the usefulness of the proposed rectifier is verified.

A Novel type of High-Frequency Transformer Linked Soft-Switching PWM DC-DC Power Converter for Large Current Applications

  • Morimoto Keiki;Ahmed Nabil A.;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.216-225
    • /
    • 2006
  • This paper presents a new circuit topology of DC busline switch and snubbing capacitor-assisted full-bridge soft-switching PWM inverter type DC-DC power converter with a high frequency link for low voltage large current applications as DC feeding systems, telecommunication power plants, automotive DC bus converters, plasma generator, electro plating plants, fuel cell interfaced power conditioner and arc welding power supplies. The proposed power converter circuit is based upon a voltage source-fed H type full-bridge high frequency PWM inverter with a high frequency transformer link. The conventional type high frequency inverter circuit is modified by adding a single power semiconductor switching device in series with DC rail and snubbing lossless capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge inverter arms and DC busline can achieve ZVS/ZVT turn-off and ZCS turn-on commutation operation. Therefore, the total switching losses at turn-off and turn-on switching transitions of these power semiconductor devices can be reduced even in the high switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules is selected to be 60 kHz. It is proved experimentally by the power loss analysis that the more the switching frequency increases, the more the proposed DC-DC converter can achieve high performance, lighter in weight, lower power losses and miniaturization in size as compared to the conventional hard switching one. The principle of operation, operation modes, practical and inherent effectiveness of this novel DC-DC power converter topology is proved for a low voltage and large current DC-DC power supplies of arc welder applications in industry.

Transformer Parasitic Inductor and Lossless Capacitor-Assisted Soft-Switching DC-DC Converter with Synchronous Phase-Shifted PWM Rectifier with Capacitor Input Filter

  • Saitoh, Kouhei;Abdullah Al, Mamun;Gamage, Laknath;Nakaoka, Mutsuo;Lee, Hyun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.217-221
    • /
    • 2001
  • This paper presents a new prototype of soft-switching DC-DC power converter with a high frequency transformer link which has two active power controlled switches in full bridge rectifier with capacitor input type smoothing filter. In this DC-DC converter, ZVS of the inverter in transformer primary side and ZCS of active rectifier area in secondary side can be completely achieved by taking advantage of parasitic inductor component of high-frequency transformer and loss less snubbing capacitors. Its operation principle and salient features are described. The steady-state operating characteristics of the proposed DC-DC power converter are illustrated and discussed on the basis of the simulation results in addition to the experimental ones obtained by 2kw-40kHz power converter breadboard set up.

  • PDF

Innovative Electromagnetic Induction Eddy Current-based Far Infrared Rays Radiant Heater using Soft Switching PWM Inverter with Duty Cycle Control Scheme

  • Tanaka H.;Sadakata H.;Muraoka H.;Okuno A.;Hiraki E.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.64-68
    • /
    • 2001
  • This paper presents an innovative prototype of a new conceptual electromagnetic induction heated type far infrared rays radiant heating appliance using the voltage-fed edge-resonant ZVS-PWM high frequency inverter using IGBTs for food cooking and processing which operates under a constant frequency variable power regulation scheme. This power electronic appliance with soft switching high frequency inverter using IGBTs has attracted special interest from some advantageous viewpoints of safety, cleanliness, compactness and rapid temperature response, which is more suitable for consumer power electronics applications.

  • PDF