• Title/Summary/Keyword: Sodium-water Reaction

Search Result 225, Processing Time 0.025 seconds

A study on the fabrication of high purity lithium carbonate by recrystallization of low grade lithium carbonate (저급 탄산리튬의 재결정화를 통한 고순도 탄산리튬 제조에 대한 연구)

  • Kim, Boram;Kim, Dae-Weon;Hwang, Sung-Ok;Jung, Soo-Hoon;Yang, Dae-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.16-23
    • /
    • 2021
  • Lithium carbonate recovered from the waste solution generated during the lithium secondary battery manufacturing process contains heavy metals such as cobalt, nickel, and manganese. In this study, the recrystallization of lithium carbonate was performed to remove heavy metals contained in the powder and to increase the purity of lithium carbonate. First, the leaching efficiency of lithium carbonate according to pH in the aqueous hydrochloric acid solution was examined, and the effect on the recrystallization of lithium carbonate according to the equivalent and concentration of sodium carbonate was confirmed. As the equivalent and concentration of sodium carbonate increased, the recovery rate of lithium carbonate improved. And the SEM image showed that the crystal shape was changed depending on the reaction conditions with sodium carbonate. Finally, the high purity lithium carbonate of 99.9% or more was recovered by washing with water.

Sintering of $\alpha{\;}-{\;}Al_2O_3$ with NaOH (가성소다를 이용한 $\alpha{\;}-{\;}Al_2O_3$의 소결반응)

  • 김재용;이진수;서완주;박수길;엄명헌
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2000
  • This study was investigated to the reaction of alumina sintering with alkaline. The soluble $NaAlO_2$ was made after the commercial ${\alpha}-Al_2O_3$ was calcinated with NaOH. The reaction of alumina was carried out to be based on the effects of calcination temperature, time, and the mixing ratio of ${\alpha}-Al_2O_3/NaOH$. The alumina was calcined over $500^{\circ}C$ with NaOH powder after it was sieved with 170/270 mesh. The calcined alumina with NaOH powder was dissolved into $25^{\circ}C$ distilled water and filtrated, and HCI was added to adapt pH 6.5~7.5. The residue was separated with vacuum pump for filtration after it was adapted to proper pH, and aluminum compound was precipitated with $Al(OH)_3$. The investigation was carried out with the variables; the calcination temperature($500-900^{\circ}C$), the calcination time (30~90 min), and the concentration of HCI when leaching(0.5~3.0N) respectively. In this investigation, the main product of ${\alpha}-Al_2O_3$ and NaOH was $NaAlO_2$ and the maximum conversion ratio was 91.4% under the optimum conditions as followed ; the ratio of NaOH/${\alpha}-Al_2O_3$ was 1.5 and the calcination conditions were $800^{\circ}C$ and 90 min.

  • PDF

The Synthesis and Optical Properties of Silica Coated CdSe/ZnS QDs (실리카가 코팅된 양자점의 코팅두께에 따른 광 특성 변화)

  • Lee, Ji-Hye;Shin, Hyun Ho;Lee, Jong-Heun;Hyun, Sang Il;Koo, Eunhae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.221-226
    • /
    • 2013
  • The water soluble quantum dots (QDs) are synthesized by the phase transfer and silica coating reaction. The photoluminescence intensity of silica-coated QDs are mainly affected by the amount of phase transfer agent, SDS (sodium dodecyl sulfate), and the maximum value is obtained at the cmc (critical micell concentration) concentration of SDS in the phase transfer reaction. Based on fluorescence spectra and field emission transmission electron microscope (FETEM), the energy transfer rate by forster resonance energy transfer (FRET) is increasing with the thickness of the silica shell coated on CdSe/ZnS QDs.

Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem

  • Harish, Narayana;Janardhan, Prashanth;Sangami, Sanjeev
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.225-237
    • /
    • 2018
  • The sorption of metal ions with low-cost adsorbents plays an important role in sustainable development. In the present study, the efficacy of sugarcane bagasse, rain tree fruits (samaneasaman), banana stem and their mixtures, used as bio-sorbents, in the removal of Cu(II) and Pb(II) ions from aqueous solution is evaluated. Batch studies are conducted, and residual ions were measured using Inductively Coupled Plasma (ICP)-atomic spectrometer. Effect of pH, initial metal ion concentration, reaction time and adsorbent dosage are studied. The Pb(II) removal efficiency was observed to be 97.88%, 98.60% and 91.74% for rain tree fruits, banana stem and a mixture of adsorbents respectively. The highest Cu(II) ion removal was observed for sugarcane bagasse sorbent with an efficiency of 82.10% with a pH of 4.5 and a reaction time of 90 min. Finally, desorption studies were carried out to study the leaching potential of adsorbent, and it was found that the adsorbent is stable in water than the other leaching agents such as HCl, ammonium acetate, Sodium EDTA. Hence, these adsorbents can be effectively used for the removal of these heavy metals.

Geochemical Characteristics of Groundwater in Korea with Different Aquifer Geology and Temperature -Comparative Study with Granitic Groundwater (대수층 지질 및 온도에 따른 국내 지하수의 지구화학적 특징 -화강암질암내 지하수와의 비교연구)

  • 이종운;전효택;전용원
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.212-222
    • /
    • 1997
  • Geochemistry of metasedimentary groundwaters and spar waters has been studied in comparison with that of granitic groundwaters in Korea. Metasedimentary groundwaters show $Ca^{2+]$-${HCO_3}^-$ type at depth and low sodium concentrations compared with granitic groundwaters, which is due to the lack of plagioclase in their aquifer mineralogy and, therefore, the predominant reaction of calcite dissolution. According to factor analysis, metasedimentary groundwaters at 100~300 m depth are represented by 1) the dissolution of calcite and Mg-carbonates, 2) transformation of kaolinite to illite, and 3) the presence of sodium as not the product of plagioclase dissolution but a artificial pollutant. Discriminant function between the granitic and metasedimentary groundwaters shows a good discriminating ability with 81.8%, and groundwaters of volcanic aquifer, which has abundant plagioclase, are included in the granitic group by this function. Spa water samples show the result of active water-rock interaction due to high temperature.

  • PDF

Preparation and Properties of Water-Soluble Photosensitive Polymer with Azido Group (Azido기를 함유한 수용성 포토레지스트 제조 및 감광 특성)

  • Yoon, Keun-Byoung;Lee, Joon-Tae;Han, Jeong-Yeop;Lee, Dong-Ho
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.374-378
    • /
    • 2007
  • Water-soluble terpolymer of acrylamide, diacetone acrylamide, and acrylic acid was prepared by redox initiators in aqueous medium. One component photoresist was synthesized by reaction of terpolymer with 4-azidoaniline. By blending the aqueous acrylamide/diacetone acrylamide copolymer solution with bisazide, 4,4'-diazidostilbene -2,2'-disulfuric acid sodium salt, two component photoresist was prepared. The photosensitivity per azido group unit mole of one component photoresist was 4 times higher than that of two component photoresist. The dot-type pattern was successfully achieved with one component photoresist at low exposure energy, which is prospective to be used as black matrix negative photoresist.

Levulinic Acid Production from Lignocellulosic Biomass by co-solvent Pretreatment with NaOH/THF (NaOH/THF 공용매 전처리 목질계 바이오매스로부터 레불린산 생산)

  • Seung Min Lee;Seokjun Han;Jun Seok Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.265-272
    • /
    • 2023
  • Lignocellulosic biomass is essential to pretreatment because of having rigid structures and a lot of lignin. Among methods of pretreatment, using THF solvents has the advantage of being easy to reuse. THF (Tetrahydrofuran) used as a co-solvent with water or ionic solvent that is inexpensive and can remove lignin over a wide range of reaction conditions. NaOH (Sodium hydroxide) has been demonstrated to preferentially solvate lignin from cellulose. Thus, NaOH was used as a pretreatment co-solvent for the fractionation of lignin by destroying the ether bond to amend for hydrolysis and expand the surface area of cellulose and hemicellulose. In this experiment, lignin was removed by the NaOH/THF co-solvent pretreatment process to characteristics for the pretreatment and obtain the optimal levulinic acid conversion yield through the acid catalyst conversion process. the NaOH/THF co-solvent system was conducted in various ratios of co-solvent under a total of 16 conditions. And the temperature was 180 ℃ during to 60 mins. The optimum condition of co-solvent is NaOH 5 wt%/THF 90:10(v/v%), 76.8% glucan content was obtained through this co-solvent pretreatment, and 90.1% lignin was removed. In the acid catalyst conversion process, which is a subsequent pretreatment process, the experiment was conducted under the conditions of 30 to 90 min of reaction time and 160 ℃ to 200 ℃ reaction temperature. The optimum condition of acid catalyst conversion process is 60min reaction time under of 180 ℃, and it obtained 84.7% of levulinic aicd conversion yield.

Properties of Self-hardened Inorganic Coating in the System Alumina-Silica-Calcium Oxide by the Reaction with Alkalies (알칼리 반응에 의한 알루미나-실리카-산화칼슘계 무기질 자기경화 코팅의 특성)

  • Jeon, Chang-Seob;Song, Tea-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • Some basic properties of inorganic coatings hardened by the room temperature reaction with alkalies were examined. The coating paste was prepared from the powders in the system $Al_2O_3-SiO_2$-CaO using blast furnace slag, fly ash and amorphous ceramic fiber after mixing with a solution of sodium hydroxide and water glass. The mineralogical and morphological examinations were performed for the coatings prepared at room temperature and after heating to $1200^{\circ}C$ respectively. The binding force of the coating hardened at room temperature was caused by the formation of fairly dense matrix mainly composed of oyelite-containing amorphous phase formed by the reaction between blast furnace slag and alkali solution. At the temperature, fly ash and ceramic fiber was not reacted but imbedded in the binding phase, giving the fluidity to the paste and reinforcing the coating respectively. During heating up to $1200^{\circ}C$, instead of a break in the coating, anorthite and gehlenite was crystallized out by the reaction among the binding phase and unreacted components in ternary system. The crystallization of these minerals revealed to be a reason that the coating maintains dense morphology after heating. The maintenance of binding force after heat treatment is seemed to be also caused by the formation of welldispersed fiber-like mineral phase which is originated from the shape of the amorphous ceramic fiber used as a raw materials.

Synthesis of Silver Nanocrystallites by a New Thermal Decomposition Method and Their Characterization

  • Lee, Don-Keun;Kang, Young-Soo
    • ETRI Journal
    • /
    • v.26 no.3
    • /
    • pp.252-256
    • /
    • 2004
  • We formed silver nanocrystallites by the thermal decomposition of a $Ag^{+1}$-oleate complex, which was prepared by a reaction with $AgNO_{3}$ and sodium oleate in a water solution. The resulting monodispersed silver nanocrystallites were produced by controlling the temperature (290$^{\circ}$C). Transmission electron microscopic (TEM) images of the particles showed a 2-dimensional assembly of the particles with a diameter of $9.5{\pm}0.7nm$, demonstrating the uniformity of these nanocrystallites. An energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanocrystallites showed the highly crystalline nature of the silver structure. We analyzed the decomposition of the $Ag^{+1}$-oleate complex using a Thermo Gravimetric Analyzer (TGA) and observed the crystallization process using XRD.

  • PDF

Graft Polymerization of Methacrylic acid onto PET Film (PET필름에 Methacrylic 산의 그라프트 중합)

  • Chung Hae Won
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.79-84
    • /
    • 1986
  • Methacrylic acid was graft polymerized with benzoyl peroxide in itiator onto the commercial PET film. Graft polymerization was carried out in emulsion, which consisted of BPO (1), chlorobenzene(8) as swelling agent, tween 80(1) and sodium lauryl sulfate(1) as emulsifier and water(1,000). Original PET film has poor reactivities and, so the film preswdled with benzyl alcohol($150^{\circ}C$, 1hr) was also examined. The graft yield of PET film was increased with reaction temperature and monomer concentration. The graft yield of preswelled PET film was higher than that of no-treated PET film. Moisture regain was linearly increased with graft yield. DSC thermodiagram showed the Tm of grafted PET film was same as that of original PET film. Grafted PET film was dyed with methylene blue solution. The photograph of the cross section showed that grafting was occured not at the center but near surfaces.

  • PDF