• Title/Summary/Keyword: Sodium substitution

Search Result 100, Processing Time 0.026 seconds

Effects of partial substitution of nitrites with purple-fleshed sweet potato powder on physicochemical characteristics of sausages

  • Jin, Sang-Keun;Shin, Teak-Soon;Yim, Dong-Gyun
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.702-712
    • /
    • 2020
  • Synthetic nitrite imparts a reddish-pink color to meat and a distinct flavor to meat products, delays lipid oxidation, and inhibits microbial growth and pathogens. However, excessive intake of nitrite might result in the production of carcinogenic nitrosamine, which might increase the risk of cancer in humans. Therefore, we aimed to find an alternative natural colorant for pork sausages. Pork sausages were mixed with 0.014% sodium nitrite (NaNO2) alone (CON), without either NaNO2 or purple-fleshed sweet potato powder (PP; CON1), 0.5% PP alone (PP1), 1% PP (PP2) alone, 0.011% NaNO2 and 0.5% PP (SP1), and 0.011% NaNO2 and 1% PP (SP2). The sausages were then cooked and stored for physicochemical analysis on days 0, 5, 10, 15, and 20. The a* and W* values were the greatest and lowest in the SP2 and CON1 treatments, respectively (p < 0.05). The concentrations of residual nitrite in the sausages at 20 days decreased in the order of CON > SP1, SP2 > PP2 > PP1, CON1. The fatty acid content was higher, and flavorous amino acids were more in PP2 (p < 0.05). The fatty acid composition was comparable between the SP2 and CON groups, but the contents of glutamic acid and alanine were greater in the SP2 group. In conclusion, SP2 (0.011% NaNO2 with 1% PP) could be added as a natural colorant for pork sausage production, and NaNO2 could be substituted with up to 20% PP without detrimental effects on sausage appearance and/or quality.

Method for Making High Purity Gallium by Electrowinning (전해채취에 의한 Gallium의 정제기술)

  • Choi, Young-Jong;Hwang, Su-Hyun;Jeon, Deok-Il;Han, Kyu-Sung
    • Resources Recycling
    • /
    • v.23 no.6
    • /
    • pp.63-67
    • /
    • 2014
  • Gallium is an important material and is used by industry of oxide semi-conductor and LED chip. However, the most of the gallium-containing waste resources became outflow abroad and the most of which is imported from oversea by following technical problem and low circulation rate. In this research, the recovery of high purity Gallium metal from Gallium scrap, which containing about 30% of Gallium, was investigated by using hydro-metallurgical process. As pretreatment, the Gallium scrap was pulverized and leached by strong acid such as hydro chloric acid. At the leached solution, Indium was separated as an Indium sponge by substitution reaction and then Gallium and Zinc hydroxide separated and filtrated using strong alkaline solution such as sodium hydroxide by precipitation method. Also, Gallium metal and Zinc metal was recovered by electrowinning method. To make an electrolytic solution, Gallium and Zinc hydroxide was leached by strong alkaline solution. Finally, High purity Gallium metal was recovered by vacuum refining process to remove the Zinc impurity.

Use of alternative curing salts for processing salamis

  • Yim, Dong-Gyun;Chung, Ku-Young;Jo, Cheorun;Nam, Ki-Chang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.1
    • /
    • pp.123-128
    • /
    • 2018
  • Objective: This study was performed to determine effects of different curing salts on the quality of salamis and to assess feasibility of using NaCl-alternative salts. Methods: Various types of curing salts (KCl or $MgCl_2$) as well as NaCl (sun-dried or refined) were incorporated for processing of salamis. The proximate composition, fatty acids, nucleotide-related compounds, and free amino acids of the salamis were analyzed during 40 days of ripening. Results: The substitution of NaCl by KCl caused higher fat and ash content, but lower moisture content of the salami after 20 days of ripening (p<0.05). Compared with the sun-dried NaCl, use of KCl in salami also led to greater inosine 5'-monophosphate whereas refined NaCl had more inosine (p<0.05). KCl-added salami also had a higher C12:0, C17:1, and C20:0 than other types of salami (p<0.05). $MgCl_2-added$ salami had higher content of free amino acids compared to the other salamis (p<0.05). Conclusion: Alternative curing salts such as KCl and $MgCl_2$ could substitute NaCl in consideration of quality factor of a fermented meat product. Especially replacement of NaCl with KCl will be a suitable strategy for developing relatively low sodium salami products without compromising product quality.

Mode of Action on EcoRI Restriction Endonuclease: EcoRI and EcoRI Variant N199H have Active Monomeric Forms

  • Kim, Jae-Jong;Koh, Suk-Hoon;Kim, Joong-Su;Lee, Dae-Sil
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.149-155
    • /
    • 1998
  • The N199H variant of the EcoRI endonuclease has about twice the catalytic activity of the wild-type. A comparison of their biochemical characteristics, using synthetic oligonucleotides 5'-dAAAACTTAAGAAAAAAAAAAA-3' (KA) and 5'-dTTTTTGAATTCTTTTTTTTTT-3' (KT), helps to define the cleavage reaction pathway of these enzymes. Both EcoRI and EcoRI variant N199H were found to cleave singlestranded KA or KT about three times faster than the double-stranded forms, although the KT oligonucleotide was more susceptible. Using the ssDNA substrate in kinetic analyses, lower $K_m$ values were obtained for the N199H variant than for the wild-type at low (50 mM), as well as high (200 mM), sodium chloride concentrations. This difference between the endonucleases is attributed to a grealter accessibility for tbe substrate by the variant, and also a higher affinity for the DNA backbone. It also appears that the relative activities of the two enzymes, particularly at high ionic strength, are proportional to their populations in the monomeric enzyme form. That is, according to gel filtration data, half of the N199H molecules exist as monomers in 200 mM NaCl, whereas those of the wild-type are mainly dimeric. Consequently, the Asp199 residue of the EcoRI endonuclease may be implicated in the protein-protein interaction leading to dimerization, as well as in coupling to DNA substrates. In summary, it is proposed that active monomeric endonuclease molecules, derived from the dimeric enzyme, recognize and form a complex with a single stranded form of the DNA substrate, which then undergoes nucleophilic substitution and cleavage.

  • PDF

The Improvement of Wet Strength Properties of Sheet by N-Chlorocarbamoylethylation (N-chlorocarbamoylethyl화에 의한 sheet의 습윤강도 향상효과)

  • Jeong, Myung-Joon;Jo, Byoung-Muk;Oh, Jung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.63-72
    • /
    • 1999
  • For the purpose of improving the wet strength properties of paper, cellulosic fibers were modified by the processes of carbarmoylethylation and N-chlorocarbamoylethylation. Carbamoylethylated cellulose was prepared by the reaction of acrylamide with cellulosic fibers under the alkali catalyst, and N-chlorocarbamoylethylated cellulose was prepared by the addition of sodium hypochlorite into the carbamoylethylated cellulose. In carbamoylethylation reaction, the conditions of NaOH concentration, temperature and acrylamide addition rate were considered to be important factors. An initial reactivity and degree of substitution(DS) in carbamoylethylation of cellulosic fibers were effective according to increasing the addition rates of alkali, acrylamide and the temperature condition of $40^{\circ}C$. The effective wet strength properties by N-chlorocarbamoylethylation of cellulosic fibers were indicated under the conditions of DS 0.06. The wet strength of sheet was improved to 85% at the 100% basis of dry strength. From the photograph of scanning electron microscopy, fiber cuttings on the edge of sheet sample used in tensile strength testing were found in the N-chlorocarbamoylethylated sheet, due to the improvement of fiber bonding strength. The hypochlorite treatment was effective in the recycling of N-chlorocarbamoylethylated sheet, and was reduced the wet strength of sheet to be able to reslush.

  • PDF

Meal Types by Cooking Method Consumed by Korean Adults according to Meal Provision Place: Using 2015 Korea National Health and Nutrition Examination Survey (한국 성인들이 섭취한 음식의 제공 장소별 조리법에 따른 음식 유형 분석: 2015년 국민건강영양조사 자료 이용)

  • Choi, Mi-Kyung
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.264-274
    • /
    • 2017
  • Purpose: The purpose of this study was to analyze the meal types by cooking methods provided at different meal provision places using the 2015 Korea National Health and Nutrition Examination Survey. Methods: A total of 42,441 meal data on adults from the 2015 Korea National Health and Nutrition Examination Survey were used for analysis. The data were analyzed by complex sample $x^2-test$ of independence and complex sample logistic regression analysis using SPSS 23.0 for Windows. Results: The meal provision place showing the highest frequency was home (60.2%), followed by commercial (32.5%) and institutional foodservices (7.3%). The meal types by cooking method most frequently consumed were rices (18.3%) and kimchis (16.6%). The results of the complex sample logistic regression analysis showed that breads & snacks, steamed or braised dishes, fried dishes, and fresh seasoned vegetables were more likely to be consumed at commercial or institutional foodservices than at home. In addition, noodles & dumplings were more likely to be consumed at commercial places, and Korean soups were consumed at institutional foodservices. Conclusion: From the results of this study, it is suggested to develop recipes for substitution of fried dishes and to develop low sodium recipes at commercial and institutional foodservices. In addition, education of consumers of commercial foodservice is needed to reduce consumption of fried dishes, salted seafoods, and pickled vegetables and encourage consumers to choose meals from institutional foodservice managed by dietitians.

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

In Vitro Determination of Dengue Virus Type 2 NS2B-NS3 Protease Activity with Fluorescent Peptide Substrates

  • Khumthong, Rabuesak;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.206-212
    • /
    • 2002
  • The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptides and the cleavage products could be separated by reversed-phase HPLC, and were identified by UV and fluorescence detection. All of the peptide substrates (representing the DEN polyprotein junction sequences at the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 sites) were cleaved by the recombinant protease NS2B-NS3(pro). No cleavage was observed with an enzymatically inactive S135A mutant of the NS3 protein, or with a modified substrate peptide of the NS3/NS4A polyprotein site that contained a K2093A substitution. Enzymatic activity was dependent on the salt concentration. A 50% decrease of activity was observed in the presence of 0.1M sodium chloride. Our results show that the NS3 protease activity of the refolded NS2B-NS3(pro) protein can be assayed in vitro with high specificity by using cleavage-junction derived peptide substrates.

Pore and Efflorescence Characteristics of Alkali Activated Slag-Red Mud Cement Mortar depending on Red Mud Content (레드머드 대체율에 따른 알칼리활성화 슬래그-레드머드 시멘트 모르타르의 기공 및 백화특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.261-268
    • /
    • 2017
  • Red mud is an inorganic by-product obtained from the mineral processing of alumina from Bauxite ores. A highly alkali inorganic waste product with a pH level over 11, red mud in its original state negatively impacts the ecosystem, so appropriate treatment is necessary. The development of alkali activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. However, Alkali-activated binders that use sodium activators have been reported to be more vulnerable to efflorescence. Therefore, in this study, the compressive strength, pore characteristics, water absorption, elution characteristics, and efflorescence properties of alkali-activated slag cement mortar were assessed according to their red mud substitution ratio.

Synthesis and Antiwear Properties of Ammonium Dithiocarbamate-based Ionic Liquid (I) (암모니움 디티오카바메이트계 이온성 액체의 합성 및 내마모성능 (I))

  • Baek, Seung-Yeob;Kim, Nam-Kyun;Shin, Jihoon;Chung, Keunwo;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.323-329
    • /
    • 2014
  • The friction-reducing properties of lubricants containing ionic liquids based on ammonium dithiocarbamate are studied. The ionic liquids are produced through the following two steps: the synthesis of sodium alkyl dithiocarbamates via the substitution reaction of dialkylamine and carbon disulfide and their subsequent conversion into ammonium dithiocarbamate-based ionic liquids through an ion-exchange reaction with a quaternary alkyl ammonium halide salt. The structures of the ionic liquids are characterized by NMR spectroscopy and Fourier transform infrared spectroscopy. The isolated yields of the ionic liquids, which are viscous and pale yellow, are approximately 92%. The Brookfield viscosities and pour points of the ionic liquids are determined. Further, their wear resistances are measured through the four-ball wear test and the Schwingung Reibung Ver-schleiss (oscillation, friction, wear) test. The wear scar diameter of the lubricants containing 1 wt of the quaternary alkyl ammonium dithiocarbamate-based ionic liquids (0.475-0.631 mm) is significantly lower than that of the base oil (0.825 mm), proving that the ammonium dithiocarbamate-based ionic liquids have good friction-reducing characteristics. However, these friction-reducing characteristics fade significantly after long-term storage, owing to the degradation of the ionic liquids.