• Title/Summary/Keyword: Sodium substitution

Search Result 101, Processing Time 0.016 seconds

Mineral Transformation Characteristics of Jarosite to Goethite Depending on Cation Species and pH (자로사이트 내 양이온 종과 pH에 따른 침철석으로의 광물 변화 특성)

  • Yeongkyoo Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.37 no.2
    • /
    • pp.47-57
    • /
    • 2024
  • Jarosite, a mineral belonging to the alunite family, is found in various low pH environments and can incorporate cations or oxyanions into its structure, either by coprecipitation or substitution. This mineral is sensitive to pH changes and can easily transform into goethite upon geochemical changes, such as an increase in pH. This transformation can release toxic ions from the jarosite, potentially causing additional environmental damage. In addition to potassium (K), sodium (Na) and ammonium (NH4) can also substitute for cations in jarosite. The formation of jarosites containing these and other cations is significant not only for acid mine drainage but also for the smelting industry. In this study, three different types of jarosites containing various cations were synthesized and the phase transformation of each jarosite to goethite upon pH change were compared. All the jarosites were sensitive to pH changes, showing much higher rates of phase change at pH 8 than at pH 4. At the relatively low pH of 4, the phase transformation of K-jarosite, which is most stable in structure, to goethite was the slowest. For the other two jarosites, the cations have either smaller or larger radii than K ions, resulting in differences in structural stability and they showed more rapid transformations to goethite. However, at pH 8, K-jarosite exhibited a much more rapid transformation to goethite than the other jarosites, which was also evident from the rapid increase in K ions in aqueous solution. The mineral transformation behavior of K-jarosite at higher pH is significantly different from that at lower pH, indicating that the mechanism of the transformation to goethite differs between these conditions, which requires further investigation. The results of this study indicate that the mineral transformation of jarosite in acid mine drainage or smelter waste disposal may significantly influence the behavior of heavy metals. This research provides valuable insights for predicting the behavior of heavy metals in smelting industry waste disposal.