• Title/Summary/Keyword: Sodium silica

Search Result 175, Processing Time 0.036 seconds

Preparation and Growth of Silica Sol from Sodium Silicate (소디움실리케이트로부터 실리카 솔 제조(製造) 및 성장(成長))

  • Yoon, Ho-Sung;Kim, Chul-Joo;Kim, Sung-Don;Jang, Hee-Dong
    • Resources Recycling
    • /
    • v.16 no.5
    • /
    • pp.31-35
    • /
    • 2007
  • The formation of silica sol from sodium silicate solution and the growth of silica sols were investigated in this study. The $SiO_2$ content of 2% in sodium silicate solution was proper to oxidize sodium silicate with sulfuric acid. After the removal of sodium ions in sodium silicate solution, the pH of silicate solution had to be controlled above 9 for a stable silicate solution. The silica sol, which size is about 10 nm, could be prepared by heating the mixed solution of sodium silicate and silicate solution removed sodium ions at pH 10 and 80. And the silica sol grew into about 50 nm as silicate solution was added to silica sol solution.

Preparation and Interface Properties of Colloidal Silica (콜로이드 실리카의 제조 및 계면특성)

  • Lee, Han Chul;Kim, Jong Hyub;Chang, Yoon Ho
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.386-390
    • /
    • 2006
  • Colloidal silica which has high surface area and excellent surface properties are chemically stable inorganic materials and used for various applications in industry. Silica sol was prepared from sodium silicate solution by acid neutralization method and ion exchange treatment to remove sodium ions. Through the experimental analysis for controlling factors of particle growth rate, such as temperature, pH, and aging time, the uniform size distribution of silica sol could be obtained. The size distribution and shape of silica sol was measured by TEM and dynamic light scattering method. Zeta potential change and gelling phenomena of silica sol and its rheological properties also investigated.

Synthesis of High Purity Nano-Silica Using Water Glass (물유리를 이용한 고순도 나노실리카 제조)

  • Choi, Jin Seok;Lee, Hyun-Kwuon;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.271-276
    • /
    • 2014
  • Silica nano-powder (SNP) is an inorganic material able to provide high-performance in various fields because of its multiple functions. Methods used to synthesize high purity SNP, include crushing silica minerals, vapor reaction of silica chloride, and a sol-gel process using TEOS and sodium silicate solution. The sol-gel process is the cheapest method for synthesis of SNP, and was used in this study. First, we investigated the shape and the size of the silica-powder particles in relation to the variation of HCl and sodium silicate concentrations. After drying, the shape of nano-silica powder differed in relation to variations in the HCl concentration. As the pH of the solution increased, so did the density of crosslinking. Initially, there was NaCl in the SNP. To increase its purity, we adopted a washing process that included centrifugation and filtration. After washing, the last of the NaCl was removed using DI water, leaving only amorphous silica powder. The purity of nano-silica powder synthesized using sodium silicate was over 99.6%.

Characterization of Silica Sol Particle Prepared by Sol-Gel Reaction from Sodium Silicate Solution (소디움실리케이트 수용액(水溶液)으로부터 솔-젤 반응(反應)에 의해 제조(製造)된 실리카 솔 입자특성(粒子特性) 고찰(考察))

  • Kim, Chul-Joo;Kim, Sung-Don;Jang, Hee-Dong;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.30-37
    • /
    • 2009
  • Silica sol was prepared from the mixture of sodium silicate solution and oxidized silicate solution in which sodium had been removed by sol-gel process. The properties of sodium silicate solution and silicate solution thus prepared were characterized by yellow silicomolydate method. Moreover, the formation and growth of silica sol from sodium silicate solution was investigated. Sodium silicate solution with 2% of $SiO_2$ contains 95% of reactive silicate, and 50% of reactive silicate participates sol-gel reaction. From the results of FT-IR analysis, it was found that the intensity of silanol bond decreased and the intensity of siloxane bond increased with increasing reaction temperature. Zeta potential of silica sol prepared at each condition was -40~-60 mV and it could be known that silica sol in this study was well dispersed. The silica sol with 5~10 nm size could be prepared by heating the mixed solution of sodium silicate and silicate solution. And the silica sol grew into about 20 nm as silicate solution was added to silica sol solution.

A Study on the Sol-Gel Reaction Kinetics of Sodium Silicate Solution (규산(硅酸)나트륨 수용액(水溶液)의 솔-젤 반응속도론적(反應速度論的) 고찰(考察))

  • Kim, Chul-Joo;Yoon, Ho-Sung;Jang, Hee-Dong
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.34-42
    • /
    • 2008
  • The properties of sodium silicate solution were surveyed by using the yellow silicomolybdic method, and the formation of silica sol from sodium silicate solution and the growth of silica sol were investigated in this study. The $SiO_2$ content of 2 wt% in sodium silicate solution was proper to oxidize sodium silicate with sulfuric acid. After the removal of sodium ions in sodium silicate solution, the pH of silicate solution had to be controlled above 9 for the stabilization of silicate solution. The condensation between silicic acid species and silica nuclei surfaces has been studied at $20{\sim}80^{\circ}C$ and pH 10 in silicate solutions with silica nuclei. The reaction falls into two kinetics regimes, limited at high silicic acid species concentration by polymerization, but at lower concentration by a process whereby deposited silicic acid species condenses further to silica. The overall condensation is first-order in silicic acid species concentration, proceeded toward to pseudo equilibrium concentration, $C_x$, rather than the solubility of amorphous silica. The heat of solution of amorphous silica was 3.34 kcal/mol and exhibits an Arrhenius temperature dependence with an apparent activation energy of 3.16 kcal/mol in the range of $20{\sim}80^{\circ}C$.

The Effect of Acetonitrile on the Texture Properties of Sodium Silicate Based Silica Aerogels (아세토니트릴 첨가가 물유리 기반 실리카 에어로겔의 기공구조에 미치는 영향)

  • Kim, Younghun;Kim, Taehee;Shim, Jong Gil;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.143-148
    • /
    • 2018
  • Sodium silicate based silica aerogels are lower in cost than silica alkoxide based silica aerogels, but the demand is decreasing as their physical properties are lowered. In this research, acetonitrile as a drying control chemical additive (DCCA) is added in the sol state to improve the pore-structural properties of sodium silicate based silica aerogel by preventing the agglomeration of particles and cross-linked bond. The sodium silicate based silica aerogel by ambient pressure drying were prepared by sol-gel process. Acetonitrile/$Na_2SiO_3$ molar ratio of 0, 0.05, 0.1, 0.15, and 0.2 was added to the sol state. The physical properties of the final product were analyzed using Fourier transform infrared, contact angle measurement, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda measurements and field emission scanning electron microscopy. It was confirmed that the sample with adding 0.15 molar ratio of acetonitrile and sodium silicate showed a high specific surface area ($577m^2/g$), a high pore volume (3.29 cc/g), and a high porosity (93%) comparable to the pore-structural properties of silica alkoxide based silica aerogels.

A Study on the Characteristics of Alkali Silica Sol Grouting Material (알칼리성 실리카졸 지반주입재의 특성에 관한 연구)

  • Cho, Younghun;Kim, Chanki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • For the purpose of cut off and ground stabilization, water glass chemical grouting method using sodium silicate has problems of weakening durability and ground water pollution because leaching was conducted when the homogel is exposed to the ground water as time elapses. The purpose of this study is to identify the effect of alkali silica sol ground injection materials, it was compared with the sodium silicate ground injection materials using water glasses. For sodium silicate and alkali silica sol by mixing each case is divided into four different specimens were made and tested. The characteristic of alkali silica sol ground injection material was analyzed by unconfined compression test and environmental impact statement of ordinary portland cement and blast furnace slag cement. Alkali silica sol specimens were made mixing A-solution and B-solution in the proportion of one on one. Through this study, alkali silica sol ground injection mixing blast furnace slag cement has excellent strength and environment-friendly.

Study on the Synthesis and thermal Characteristics of Nano Porous Silica Powder (나노세공 실리카 분말의 합성과 열적 특성에 관한 연구)

  • 김종길;박진구;김호건
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.365-369
    • /
    • 2002
  • Silica hydrogel was synthesized by the reaction of liquid sodium silicate with sulfuric acid. The condensation polymerization of the synthesized hydrogel was carried out via an aging process under the acidic or alkaline conditions. Nano porous silica with the pore size below 3 nm and surface area of $715m^2/g$, was obtained by the above processes in acidic ranges(pH : 3~5). The pore size and surface area of the silica varied with pH, and in alkaline ranges(pH : 8~10), those were 21 nm and $300m^2/g$ respectively. The characteristics of the silica varied with the thermal treatment which caused the change of surface area, pore volume and pore diameter.

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles (유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조)

  • Lee, Chongmin;Kim, Jiwoong;Chang, Hankwon;Roh, Ki-Min;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.78-82
    • /
    • 2015
  • Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.

A study on the synthesis of porous silica from a sodium silicate (물유리로부터 다공성 실리카 제조에 관한 연구)

  • Yoo, Jeong-Kun;Keum, Young-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2519-2525
    • /
    • 2014
  • WeI have studied the process for synthesizing porous silica with a specific surface area of minimum $800m^2/g$ by adding surfactant [Poly Etylene Glycol(PEG) and Hydroxy Propyl Cellulose(HPC)] to the sol-gel reaction between sodium silicate and hydrochloric acid. NaCl, the by-product of the sol-gel reaction, was water cleaned and removed; when 200 ml of water was used to clean 50 g of silica gel, NaCl remaining in the silica gel was reduced to maximum 0.81wt%. The appropriate level of surfactant for silica gel synthesizing proved to be below 5%. As a result of the experiment, for the silica synthesized by adding surfactant of HPC(2.5%)+PEG(2.5%), the surfactant area was $860m^2/g$ and grain size was $20-50{\mu}m$. From this study, we have concluded that it is of industrial significance that specific surface area is improved and silica of a regular grain size is obtained just by adding surfactant in the gel process or drying process of silica.