• Title/Summary/Keyword: Sodium reduction

Search Result 714, Processing Time 0.02 seconds

Effect of Supplementation of Fermented Milk Containing Active Peptides(IPP, VPP) in Accordance with Medical Nutrition Therapy in Pre- and Hypertension Subjects (고혈압 전단계 및 고혈압 환자에서 의학영양치료와 병행한 생리활성 펩티드 함유 유산균 발효유 섭취가 혈압에 미치는 영향)

  • Kim, Ji-Young;Kim, Yun-Young;Kim, Hye-Rang;Yun, Sung-Seob;Kim, Wan-Sik;Yea, Hyun-Soo;Chung, Jin-Young;Lee, In-Hoe;Choue, Ryo-Won
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.918-926
    • /
    • 2008
  • It is well known non-drug therapy for hypertension patients can reduce blood pressure. These types of therapy include maintaining ones ideal body weight, quitting smoking, consuming large amounts of fruits and vegetables consuming low levels of saturated fat and salt and regular exercise. Fermented milk protein derived biologically active peptides such as isoleucine-proline-proline_(IPP) or valine-proline-proline_(VPP) have been shown to lower blood pressure in hypertensive subjects. This study was conducted to investigate the antihypertensive effects of medical nutritional therapy _(MNT) in accordance with the consumption of fermented milk enriched with IPP and VPP. To accomplish this, we conducted a randomized case-controlled study of 43 subjects who had blood pressure levels greater than 120/80 mmHg. The subjects in the study group were randomly allocated into two groups, an MNT + fermented milk (100mL/day) group (n=21) and an MNT+L. helveticus fermented milk with tripeptides (IPP=2.2mg, VPP=2.6mg/100mL) group (n=22). The MNT included weight management, reduction of sodium, total fat and saturated fat intake, increased intake of fruits and vegetables, and increased intake of low fat dairy products. The treatments were administered for 12 weeks during which time no drug interventions were conducted. The daily intakes of total calories, fats, cholesterol and Na decreased significantly after 12 weeks of MNT in the control and the experimental groups. In addition, the systolic blood pressure de creased significantly in the control and experimental groups; however, the diastolic blood pressure only decreased significantly in the experimental group. Overall, the results of this study indicate that the intake of fermented milk containing IPP and VPP in conjunction with MNT exerted positive effects on the blood pressure of pre- and hypertensive subjects.

  • PDF

The Calcium Release from Cardiac Mitochondria by Sodium and Potassium ($Na^+$$K^+$에 의한 심장근 Mitochondria에서의 $Ca^{++}$ 유리작용)

  • Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.14 no.1_2
    • /
    • pp.1-11
    • /
    • 1978
  • The $Na^+$-and $K^+$-induced $Ca^{++}$ release was measured isotopically by Milipore filter technique in mitochondria isolated from rabbit ventricles. The release of $Ca^{++}$ from mitochondria could be induced by 1-3 mM of $Na^+$ added in incubating medium under the presence of 0.5mM EGTA to prevent the released $Ca^{++}$ from rebinding with mitochondrial membrane. The amount of $Ca^{++}$ released was increased by increasing the concentration of $Na^+$ added. 100mM $K^+$, in itself, did not induce the $Ca^{++}$ release from cardiac mitochondria, the $Na^+$-induced $Ca^{++}$ release, however, was potentiated by the presence of $K^+$. The potentiation of $Na^+$-induced $Ca^{++}$ release by $K^+$ was proportional to the $Na^+/K^+$ ratio presented in the incubating medium. Among the monovalent cations other than $Na^+$, the release of $Ca^{++}$ from cardiac mitochondria was shared only by $Li^+$. The $Na^+$-induced $Ca^{++}$ release could be also observed in the mitochondria isolated from liver and kidney. However, the $Na^+$ sensitivity was somewhat lower in liver and kidney mitochondria than in heart mitochondria. The release of $Ca^{++}$ induced by $Na^+$ in the mitochondria isolated from the experimentally produced failured heart was not different from that in the normal heart mitochondria, and was not directly modified by $10^{-6}{\sim}10^{-5}$ M of Ouabain. From the experiments, it was suggested that the $Ca^{++}$ released from mitochondria by $Na^+$ could be used in excitation-contraction coupling process to initiate the contraction of the cardiac myofibrils. Futhermore, it appeared that the phenomenon of $Ca^{++}$ release from cardiac mitochondria by $Na^+$ and $K^+$ might be related to the inotropic effect of digitalis glycoside which could bring about the increase of $Na^+$ or the reduction of $K^+$ intracellulary through the inhibition of $Na^+$, $K^+$-ATPase.

  • PDF

Application Effect of Food Waste Compost Abundant in NaCl on the Growth and Cationic Balance of Rice Plant in Paddy Soil (NaCl을 다량 함유한 음식물쓰레기 퇴비 시용이 논 토양에서 벼의 생육과 체내 양이온 균형에 미치는 영향)

  • Lee, Sang-Eun;Ahn, Hyun-Jin;Youn, Seung-Kil;Kim, Seak-Min;Jung, Kwang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • High sodium contents in food-waste compost(FWC) is the greatest limitation to recycle it to arable lands in Korea. The effects of the FWC application to paddy soil on the growth of rice plants, cationic balance in plants, and the sodicity of soil have been studied in pot trials. The effects of FWC application were compared with those of NaCl compound and swine manure compost(SMC) application. $Na_2O$ contents of FWC were high as 2.2%. Immediately after transplanting, rice plants in three treatments showed severe wilting in the order of 40Mg FWC $ha^{-1}$ > NPK+900kg $NaClha^{-1}$ > 20Mg FWC $ha^{-1}$. The high EC value and volatile acid contents of soil solution were regarded as the cause of severe wilting of young rice plants. Increase of NaCl application rate upto $900kgha^{-1}$ showed no significant reduction of dry matter yield at harvesting stage. Regardless of application rates FWC reduced the dry matter yield at harvesting stage, while SMC increased it with increase of application rates upto $40Mgha^{-1}$. In NPK+NaCl and FWC treatments, Na contents and equivalent ratio in plants increased linearly with increase of Na application rates. Between Na and K equivalent ratio negative correlation with high significance was shown. In contrast to much difference of Na, K, and Na/K equivalent ratio among treatments, little difference of Na+K indicated the physiological substitution of Na for K in rice plants. Na use efficiency in NPK+NaCl and FWC treatments showed 12-22%.

  • PDF

Optimal Salt Concentration and Temperature for Perilla Seed Germination and Soil Bulk Density, Sowing Depth, and Salinity on Emergence Rate in Reclaimed Soil (들깨 NaCl 농도, 온도에 따른 발아와 간척지 토양에서 용적밀도, 파종깊이, 염농도에 따른 출현 특성)

  • Yang-Yeol Oh;Kwang Seung-Lee;Hee-Kyoung Ock;Hak-Seong Lee;Seo-Young Jung;Bo-Seong Seo;Young-Tae Shin;Kang-Ho Jung;Bang-Hun Kang;Hyun-Suk Jo;Su-Hwan Lee;Jin Jung;Seung-Yeon Kim;Jung-In Kim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.413-421
    • /
    • 2023
  • Data on salt tolerance, optimal sowing depth, soil bulk density (pb) and cardinal temperatures required for the germination and emergence of perilla (Perilla frutescens (L.) Britt) are scarce for reclaimed land soil. An experiment was conducted across six temperature treatments (10, 15, 20 , 25, 30, and 35℃) to determine the cardinal temperature for perilla seed germination and four salinity levels (0, 20, 40, and 60 mM) to determine the salt tolerance. Another experiment was performed for quantifying the emergence response of perilla to pb (1.1, 1.3, and 1.5 g cm-3), sowing depth (1, 2, 3, and 4 cm) and soil salinity. The results revealed that increased sodium chloride levels caused a significant reduction in the seed germination at Deulhyang and Sodam. The optimum upper limit temperature was less than 35℃. The optimal sowing depth and soil bulk density were 1 cm and 1.1 g cm-3 respectively. Perilla seedling growth was inhibited at 1.9 dS m-1 although varying responses were observed. These results aid our understanding of the germination and emergence rate of these crops and provide data for field cultivation to optimize crop sowing in reclaimed land.