• Title/Summary/Keyword: Sodium channel

Search Result 146, Processing Time 0.026 seconds

Compatibility Study between 316-series Stainless Steel and Sodium Coolant (316계 스테인리스강과 소듐 냉각재와의 양립성 연구)

  • Kim, Jung Hwan;Kim, Jong Man;Cha, Jae Eun;Kim, Sung Ho;Lee, Chan Bock
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.5
    • /
    • pp.410-416
    • /
    • 2010
  • Studies were carried out to establish the technology for sodium-clad compatibility and to analyze the compatibility behavior of the Sodium-cooled Fast Reactor (SFR) cladding material under a flowing sodium environment. The natural circulation facility caused by the thermal convection of the liquid sodium was constructed and the 316-series stainless steels were exposed at $650{^{\circ}C}$ liquid sodium for 1458 hours. The weight change and related microstructural change were analyzed. The results showed that the quasi-dynamic facility represented by the natural convection exhibited similar results compared to the conventional dynamic facility. Selective leaching and local depletion of the chromium, re-distribution of the carbide, and the decarburization process took place in the 316-series stainless steel under a flowing sodium environment. This process decreased as the sodium flowed along the channel, which was caused by the change in the dissolved oxygen and carbon activity in the liquid sodium.

Physical and Chemical Management Practices for Improving Water Quality in Channel Catfish Ictalurus punctatus Aquaculture

  • Seo, Jin-Won
    • Journal of Aquaculture
    • /
    • v.15 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Research on practices for improving water quality in channel catfish Ictalurus punctatus ponds was conducted at the Auburn University Fisheries Research Station, Auburn, Alabama, in 1998 and 1999. The objective of this two-year study was to determine better management practices to enhance water quality and improve production efficiency. In the first year, oxidation of bottom soil by drying, tilling, and applying sodium nitrate was performed (dry-till and dry-till with sodium nitrate treatments). The second year, based on the results obtained during the first year, precipitation of phosphorus (P) from water by applying gypsum was compared to the dry-till treatment (dry-till and dry-till with gypsum treatments). Control ponds were not subjected to bottom drying, tilling, sodium nitrate, or gypsum treatment. Channel catfish fingerings were stocked at 15,000/ha. In the first year, water in ponds from dry-till and dry-till with sodium nitrate treatments had lower concentrations (P < 0.01) of soluble reactive P, nitrate ($NO_{3} ^{-}) and nitrite ($NO_{2} ^{-}) nitrogen (N), total ammonia ($NH_3$) nitrogen, total suspended solids and turbidity, and higher values of pH, Secchi disk visibility, total alkalinity, total hardness, and calcium ($Ca^{2+}) hardness than water in control ponds. Ponds of the dry-till treatment also had lower concentrations (P < 0.01) of total P and total N than control ponds. Total fish production and survival rate did not differ among the treatments (P > 0.05). The findings suggested that drying and tiling pond bosoms between crops could achieve water quality improvement. Applying sodium nitrate to dry, tilled pond bosoms did not provide water quality improvement. In the second year, the treatment with the best results from the first year, dry-till, was compared with a dry-till with gypsum treatment. Enough gypsum was applied to give a total hardness of about 200 mg/L, and gypsum was reapplied as needed to maintain the hardness. Compared to the control, dry-till and dry-till with gypsum treatments had lower concentrations (P < 0.01) of total and soluble reactive P, total N, and total $NH_3$-N, and higher concentrations (P < 0.01) of dissolved oxygen. Ponds of the duty-till with gypsum treatment also had lower concentrations (P < 0.01) of chlorophyll $\alpha$, chemical oxygen demand, and total alkalinity than the control. Total fish production and survival rate did not differ (P > 0.05) among the treatments. These findings suggest that drying and tilling pond bosoms between crops and treating low hardness waters with gypsum could achieve water Quality improvement.

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.10
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.

Development of Double Rotation C-Scanning System and Program for Under-Sodium Viewing of Sodium-Cooled Fast Reactor (소듐냉각고속로 소듐 내부 가시화를 위한 이중회전구동 C-스캔 시스템 및 프로그램 개발)

  • Joo, Young-Sang;Bae, Jin-Ho;Park, Chang-Gyu;Lee, Jae-Han;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • A double rotation C-scanning system and a software program Under-Sodium MultiVIEW have been developed for the under-sodium viewing of a reactor core and in-vessel structures of a sodium-cooled fast reactor KALIMER-600. Double rotation C-scanning system has been designed and manufactured by the reproduction of double rotation plug of a reactor head in KALIMER-600. Hardware system which consists of a double rotating scanner, ultrasonic waveguide sensors, a high power ultrasonic pulser-receiver, a scanner driving module and a multi channel A/D board have been constructed. The functions of scanner control, image mapping and signal processing of Under-Sodium MultiVIEW program have been implemented by using a LabVIEW graphical programming language. The performance of Under-Sodium MultiVIEW program was verified by a double rotation C-scanning test in water.

DNA Polymorphisms of the Human CYP11B2 and ${\gamma}$ Subunit of ENaC Genes in Korean Hypertensives

  • Kang, Byung-Yong;Bae, Joon-Seol;Kim, Ki-Tae;Lee, Kang-Oh
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2002
  • Hypertension is characterized by multiple genetic and environmental factors. To establish the genetic basis of hypertension in Koreans, we investigated the genetic variations of two candidate genes (aldosterone synthase (CYP11B2), ${\gamma}$ subunit of the amiloride-sensitive epithelial sodium channel (ENaC) in the Korean patients with hypertension and normotensive controls. There were no significant differences in the genotype and allele frequencies between two groups, respectively. However, there was the significant difference between Korean and Caucasian populations in allele frequency of RFLPs in the two candidate genes. Therefore, these studies also need to be confirmed in other ethnic groups, although our results do not support a possible role of these genes on hypertension in Korean population

  • PDF

The effect of SKF S25A on SNP-, Ach-, or Pinacidil-Induced Relaxation in the Aorta of Rat (SKF 525A가 휜쥐의 대동맥에서 Sodium nitroprusside, Acetylcholine, Pinacidil에 의한 이완반응에 미치는 효과)

  • 박조영;김학림;김주원;신창열;최윤미;김진학;안형수;손의동;허인회
    • YAKHAK HOEJI
    • /
    • v.44 no.1
    • /
    • pp.80-86
    • /
    • 2000
  • TEA, glibenclamide, L-NAME and SKF 525A-induced contraction were investigated using acetylcholine, sodium nitroprusside (SNP, NO donor) and pinacidil (ATP sensitive $K^{+}$ channel opener) in rat abdominal and thoracic aorta. The relaxant effects of acetylcholine, SNP and pinacidil were not different in the abdominal aorta and in the thoracic aorta. Acetylcholine-induced relaxation was dependent on endothelial cell, but pinacidil was independent endothelia cell. In the presence of TEA, glibenclamide, L-NAME, mepacrine and SKF 525A, acetylcholine and SNP did not change, but pinacidil-induced relaxation was significantly reduced in presence of glibenclamide, which is ATP sensitive $K^{+}$ channel blocker. SKF 525A, which is inhibitor of cytochrome P$_{450}$ dependent epoxygenase, partially inhibited the pinacidil-induced relaxation. These results indicate that the pinacidil-induced relaxation may be mediated by ATP sensitive $K^{+}$ channel and partially by EETs, which is produced by cytochrome P$_{450}$ dependent epoxygenase.enase.

  • PDF

A Modified Hodgkin-Huxley Model (수정된 호지킨-헉슬리 모델)

  • 서병설
    • Journal of Biomedical Engineering Research
    • /
    • v.2 no.2
    • /
    • pp.151-158
    • /
    • 1981
  • A modification of the Hodgkin-Huxley equations was done with the changes of the binding sitea for the sodium and potassium channels. The computer simulation results agree well with the currant experiments. Thus, the contradictory problems that Suh had indicated previously can be solved. And also, the results show that the sodium and potassium channels play an important role in the firing and the leakage channel does not.

  • PDF

Numerical analysis of the temperature distribution of the EM pump for the sodium thermo-hydraulic test loop of the GenIV PGSFR

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1429-1435
    • /
    • 2021
  • The temperature distribution of an electromagnetic pump was analyzed with a flow rate of 1380 L/min and a pressure of 4 bar designed for the sodium thermo-hydraulic test in the Sodium Test Loop for Safety Simulation and Assessment-Phase 1 (STELLA-1). The electromagnetic pump was used for the circulation of the liquid sodium coolant in the Intermediate Heat Transport System (IHTS) of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) with an electric power of 150 MWe. The temperature distribution of the components of the electromagnetic pump was numerically analyzed to prevent functional degradation in the high temperature environment during pump operation. The heat transfer was numerically calculated using ANSYS Fluent for prediction of the temperature distribution in the excited coils, the electromagnet core, and the liquid sodium flow channel of the electromagnetic pump. The temperature distribution of operating electromagnetic pump was compared with cooling of natural and forced air circulation. The temperature in the coil, the core and the flow gap in the two conditions, natural circulation and forced circulation, were compared. The electromagnetic pump with cooling of forced circulation had better efficiency than natural circulation even considering consumption of the input power for the air blower. Accordingly, this study judged that forced cooling is good for both maintenance and efficiency of the electromagnetic pump.

Block of ATP-Sensitive $K^+$ Channels Expressed in Xenopus Oocytes by Dimethyl Sulfoxide

  • Park, Jin-Bong;Chae, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.2
    • /
    • pp.157-163
    • /
    • 2001
  • The effects of dimethyl sulfoxide (DMSO) were studied in two groups of Xenopus oocytes, one expressing ATP sensitive $K^+\;(K_{ATP})$ channel comprised of sulfonylurea receptor SUR1 and inwardly rectifying $K^+$ channel subunit Kir6.2, and the other expressing renal $K_{ATP}$ channel ROMK2. At concentrations of $0.3{\sim}10%$ (vol/vol) DMSO inhibited whole cell Kir6.2/SUR1 currents elicited by bath application of sodium azide (3 mM) in a concentration-dependent manner. The inhibition constant and Hill coefficient were 2.93% and 1.62, respectively. ROMK2 currents, however, was not affected significantly by DMSO. The results support the idea that DMSO inhibits $K_{ATP}$ channel expressed in Xenopus oocyte through a protein-specific mechanism(s) that remains to be further elucidated.

  • PDF

Formulation Design of Sustained-Release Matrix Tablets Containing 4-Aminopyridine (유드라짓과 알긴산 나트륨 매트릭스를 이용한 4-Aminopyridine의 서방성 제제설계)

  • Kim, Jeong-Soo;Kim, Dong-Woo;Lee, Gye-Won;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.6
    • /
    • pp.453-460
    • /
    • 2005
  • 4-Aminopyridine (AP) is a potassium channel blocker used in the treatment of neurological disorders such as multiple sclerosis and Alzheimer disease. AP‘s window of therapeutic effect appears to correlate with its plasma halflife (3.5 hours). It demonstrates pH-dependent solubility because of a weakly basic drug. In addition, the resulting release from conventional matrix tablets decreases with increasing pH-milieu of the gastrointestinal tract. The aim of this study is to design sustained release matrix tablet containing AP, overcoming this problem. $Eudragit^{\circledR}$ L 100 (EuL) and sodium alginate were used in an effort to achieve pH independent drug release. The effect of sodium alginate and EuL on drug release from matrix tablet was investigated. The drug release behavior from the different tablets was analyzed by $t_{20%},\;t_{40%},\;t_{60%}$, The exponential diffusion coefficient n, kinetic constant K were calculated according to the Korsmeyer-Peppas equation. The drug release from matrix tablets prepared with sodium alginate was decreased with increasing the content of sodium alginate in pH 7.4 while there is no significant difference in pH 1.2. The exponent n values were determined to be approximately 0.5 and 0.8 respectively, in both pH 1.2 and 7.4. These values indicate diffusion-based anomalous mechanism and erosion-based anomalous mechanism, respectively. The drug release from sodium alginate matrix tablets prepared with solid dispersion of EuL containing drug showed a slow drug release in an acidic medium and a more fast drug release in phosphate medium, compared with sodium alginate matrix tablets prepared with physical mixture. These results may be attributed to the gel forming ability of sodium alginate and pH dependent solubility of EuL. Therefore, sustained-release AP matrix tablets using sodium alginate and EuL were successfully prepared.