• 제목/요약/키워드: Sodium Sulfate

Search Result 1,287, Processing Time 0.034 seconds

Influence of SO42- Ions Concentration on Sulfate Resistance of Cement Mortars (시멘트 모르타르의 황산염침식 저항성에 대한 SO42- 이온 농도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.757-764
    • /
    • 2008
  • This paper was conducted to evaluate the durability of cement mortars exposed to varying concentrations of sodium sulfate for up to 540 days. Three types of cement mortars, namely OPC, SRC and SGC, were exposed to four sodium sulfate solutions with concentrations of 4225, 8450, 16900 and 33800 ppm of ${SO_4}^{2-}$ ions at ambient temperature. The sulfate deterioration was evaluated by measuring compressive strength and linear expansion of mortar specimens. Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens in highly concentrated sulfate solution. In particular, the $C_3A$ content in cements plays a critical role in resisting expansion due to sodium sulfate attack. Additionally, the beneficial effect of GGBS was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability. Another important observation was that the parameters for the evaluation of deterioration degree are greatly dependent on the products formed by sulfate attack.

Selection of Portland Cement for Prevention of Sulfate Attack-Part 1 Sodium Sulfate Attack (황산염침식 방지를 위한 포틀랜드시멘트의 선정-Part 1 황산나트륨 침식)

  • Kim, Jong-Pil
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.4
    • /
    • pp.441-447
    • /
    • 2009
  • This paper presents a detailed experimental study on the sulfate resistance of specimens made with portland cement exposed to sulfate attack. The mortar specimens were immersed in a 5% sodium sulfate solution for 360 days and regularly monitored for visual damage, compressive strength loss and expansion. In addition, at the end of 360 days, the products of sulfate attack and the mechanism of attack were investigated through X-ray diffraction, TG&DSC and scanning electron microscopy. The test results indicated that the sulfate deterioration data was ordinary portland cement > sulfate resistance portland cement > low heat portland cement. The microstructural studies indicated that the main reaction product of deterioration of the mortar specimens was the formation of ettringite, gypsum and thaumasite due to sulfate attack. For portland cement matrices, a low heat cement matrix containing the lowest C3A and silicate ratio (C/S) was beneficient against the sulfate attack.

Sulfate Attack and the Role of Cement Compositions

  • Lee, Seung-Tae;Lee, Seung-Heun
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.465-470
    • /
    • 2007
  • This paper presents an experimental study of the sulfate resistance of mortars and pastes exposed to sodium sulfate solutions up to one year. In order to check deterioration modes due to sulfate attack, the sodium sulfate solution was varied at three concentration steps (3,380, 10,140 and 33,800 ppm of $SO_4^{2-}$ ions), and maintained at ambient temperature. The tests include a visual examination, expansion and compressive strength loss measurements as well as x-ray diffraction tests. The experimental data indicated that the use of cement with a low $C_3A$ content and low silicate ratio has a beneficial effect on the sulfate attack of mortars. In contrast, the mortars with a high $C_3A$ content and high silicate ratio became severely degraded due to the formation of ettringite, gypsum and/or thaumasite in the cement matrix.

Manufacture and Properties of Gypsum-Wood (Gypsum-Wood의 제조와 성질)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

Effect of Salts on the Formation of $\alpha$-Calcium Sulfate Hemihydrate from by-Product Gypsum of Phosphoric Acid Process under Water Vapor at Atmospheric Pressure (상압 수증기중에서 인산 석고로부터 $\alpha$형 반수석고의 생성에 미치는 염류의 영향)

  • 이구종;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.3
    • /
    • pp.300-306
    • /
    • 1988
  • The catalytic effect of salts on formation of ${\alpha}$-calcium sulfate hemihydrate under water vapor at atmospheric pressure was studied and the formation of q-calcium sulfate hemilydrate from by-product gypsum of phosphoric acid process was investigated. The order of catalytic effect of salts are as follow: Ammonium chloride>Sodium succinate>Calcium chloride>Sodium tartrate>Magnesium chloride The prismatic crystals was formed when ammonium chloride, calcium chloride and magnesium chloride was added, whereas the needle crystals was formed when sodium tartrate was added. Ammonium chlorideis most successful in catalytic effects in formation of ${\alpha}$-calcium sulfate hermihydrate for the by-product gypsum of phosphoric acid process.

  • PDF

The Properties of Hardened Slag by Alkali and Curing Method (알칼리 첨가 및 양생방법에 따른 슬래그 경화체의 특성)

  • 김원기;소정섭;배동인
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.27-32
    • /
    • 2002
  • In this research influences of type and concentration of alkali activator and curing condition on the hydration, and properties of alkali activated blast furnace slag(AAS) concrete were investigated. Sodium carbonate and sulfate were used as alkali activators and their concentration were 4~10 weight percent with Na$_2$O equivalent to binder. The curing conditions were standard curing using 23$^{\circ}C$ water and activated curing chamber at $65^{\circ}C$. Results show that in case of sodium carbonate addition high early strengths were gained by activation of early hydration, but later strength gained was slight. On the other side sodium sulfate strengths were continuously increased with adding amount and ages. Steam curing activated early hydration so that early strengths were improved but later strengths were similar to standard curing. The strength reduction of AAS mortar with sodium sulfate was less than OPC mortar in 5% sulfuric acid solution so that AAS concrete can be useful for acid-resistance concrete.

  • PDF

Modeling of time-varying stress in concrete under axial loading and sulfate attack

  • Yin, Guang-Ji;Zuo, Xiao-Bao;Tang, Yu-Juan;Ayinde, Olawale;Ding, Dong-Nan
    • Computers and Concrete
    • /
    • v.19 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper has numerically investigated the changes of loading-induced stress in concrete with the corrosion time in the sulfate-containing environment. Firstly, based on Fick's law and reaction kinetics, a diffusion-reaction equation of sulfate ion in concrete is proposed, and it is numerically solved to obtain the spatial and temporal distribution of sulfate ion concentration in concrete by the finite difference method. Secondly, by fitting the existed experimental data of concrete in sodium sulfate solutions, the chemical damage of concrete associated with sulfate ion concentration and corrosion time is quantitatively presented. Thirdly, depending on the plastic-damage mechanics, while considering the influence of sulfate attack on concrete properties, a simplified chemo-mechanical damage model, with stress-based plasticity and strain-driven damage, for concrete under axial loading and sulfate attack is determined by introducing the chemical damage degree. Finally, an axially compressed concrete prism immersed into the sodium sulfate solution is regarded as an object to investigate the time-varying stress in concrete subjected to the couplings of axial loading and sulfate attack.

A Study on the Application of Recycled Fine Aggregate under Sulfate Environment

  • Lee, Seung-Tae
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.17-22
    • /
    • 2007
  • The report of an investigation into the performance of mortar specimens made with recycled fine aggregate (RA) exposed to sodium sulfate solution for 360 days is presented in this paper. Mechanical properties of mortar specimens such as visual examination, compressive strength, expansion and mass loss were periodically monitored. From the test results, it was found that mortar specimens with higher replacement levels of Rh exhibited poor performance in sodium sulfate solution. However, compared to mortar specimens without RA, those with lower replacement levels of RA (up to 50% by mass) was more resistant to sulfate attack. Through the x-ray diffraction analysis, it was confirmed that the main products causing sulfate deterioration in RA mortar specimens were the formation of gypsum and thaumasite.

Anti-Inflammatory Effects of Glycyrrhiza glabra Linne Extract in a Dextran Sulfate Sodium-Induced Colitis Mouse Model (감초 추출물의 Dextran Sulfate Sodium 유도 마우스 궤양성 대장염 억제 효과)

  • Lee, Keyong-Ho;Rhee, Ki-Hyeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.435-439
    • /
    • 2010
  • The aim of this study was to evaluate the anti-inlfammatory effects of Glycyrrhiza glabra Linne extract on ulcerative colitis induced by 3% dextran sulfate sodium in mice. The experimental animals were divided into six groups: control(normal), DSS-induced colitis(control), 1 mg/kg, 10 mg/kg, and 100 mg/kg of Glycyrrhiza glabra Linne extract, and 150 mg/kg 5-aminosalicylic acid(5-ASA)(positive control). We evaluated the pathological disease activity index(DAI), change in weight, colon mucosa damage and myeloperoxidase(MPO) in colon mucosa. Treatment with 10 mg/kg and 100 mg/kg of Glycyrrhiza glabra Linne extract led to significant loss of body weight, the decrease of MPO activity and clinical symptoms such as DAI and histological change. In particular, 100 mg/kg Glycyrrhiza glabra Linne extract led to markedly greater improvement than 150 mg/kg 5-ASA treatment. These results suggest that Glycyrrhiza glabra mediated anti-inflammatory action on colorectal sites may be a useful therapeutic approach to ulcerative colitis.