• Title/Summary/Keyword: Sodium Hypochlorite

Search Result 318, Processing Time 0.032 seconds

SURFACE DISINFECTION OF INTRAORAL FILMS (구내 방사선 필름의 표면소독효과에 관한 연구)

  • Lee Jin-Koo;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.2
    • /
    • pp.329-335
    • /
    • 1992
  • The purpose of the study was to determine whether Sodium hypochlorite and Glutaraldehyde would be effective for the surface disinfection of contaminated radiographic film pockets with saliva The following results were as obtained 1. Proper times for surface disinfection of 2.0% Glutaraldehyde and 3.5% Sodium hypochlorite were 60 seconds. 2. When films were immerged in 2% Glutaraldehyde solution for 1 minute, baterial colonies were present in 24 cases(80%). 3. When films were immerged in 3.5% Sodium hypochlorite solution for 1 minute, bacterial colony was absent in 25 cases(83.3%). 4. Differences of effectiveness on surface disinfection between 2% Glutaraldehyde and 3.5% Sodium hypochlorite were statistically significant.

  • PDF

The Effects of Chlorination on the Friction Properties of SBR (염소화 반응조건이 SBR의 표면마찰 특성에 미치는 영향)

  • Park, Cha-Cheol;Kim, Ho-Jung
    • Fashion & Textile Research Journal
    • /
    • v.10 no.1
    • /
    • pp.101-105
    • /
    • 2008
  • This study was concerned with the influence of reaction conditions on the surface friction properties of Syrene-Butadiene Rubber(SBR) sheet when it was chlorinated by chemical treatment method using the sodium hypochlorite and sulfuric acid. The results of this study were as follows. SEM photographs of chlorinated SBR surface showed uneven etching caused by the chlorination. In the FTIR spectra, the intensity of C=C peak of SBR was decreased with increasing the concentration of sodium hypochlorite. Otherwise there was no trace of C=C peak in spectrum of SBR treated with 5 wt% NaOCl with pH 0.1 for 90 seconds. EDX spectra showed that relative content of chlorine of SBR was increased with increasing the amount of sodium hypochlorite, and also affected with pH condition of acid solution. Friction angle and friction coefficient of SBR were influenced with concentration of sodium hypochlorite, but were not with pH condition of acid solution.

Effects of Light Source, Plant Growth Regulators (GA, BA, ABA) and Sodium Hypochlorite on 'Grand Rapid' Lettuce (Lactuca Sativa L.) Seed Germination (광질(光質), 생장조절물질(生長調節物質) (GA, BA, ABA) 및 Sodium Hypochlorite의 처리가 상치 (Lactuca sativa L.) 종자의 발아(發芽)에 미치는 영향(影響))

  • Lee, Young Bok;Kim, Young Rae
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.242-248
    • /
    • 1983
  • The effects of light source, plant growth regulators (GA, BA, ABA), and sodium hypochlorite (4% Cl, SH) on germination of 'G rand Rapid' lettuce (Lactuca sativa L.) seed were studied. Seed did not germinate under the conditions of dark and blue light. The treatment of GA or BA did not promote on germination under dark or blue light. The germination percentage under red light was very high, it was similar to the condition of white light. ABA inhibited lettuce seed germination. Although ABA was treated, BA 10ppm treatment was moderately effective under white light condition and BA 10ppm or 50ppm combined with GA 50ppm were also effective on seed germination under dark condition. Presoaking in sodium hypochlorite solution induced germination of lettuce seed in any condition of dark or white light. The optimum presoaking time in sodium hypochlorite solution was twenty min.

  • PDF

Chemical Treatment for the Destruction of Aflatoxins in Laboratory Waste Water (실험실 폐수중 Aflatoxin 감소를 위한 화학적 처리에 관한 연구)

  • 김종규
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.52-56
    • /
    • 1992
  • The ability of chemicals, 10% sodium hypochlorite, 28% ammonium hydroxide, 5% sodium hydroxide, 5% sodium bicarbonate, 0.1% hydrochloric acid, 5% hydrogen peroxide, and 5% acetone, to destroy aflatoxins in laboratory waste water containing 3.26 ppb of B$_{1}$ 7.64 ppb of B$_{6}$3 ppb of G$_{1}$, and 11.39 ppb of G$_{2}$ with the total of 29.11 ppb was investigated. High performance liquid chromatograph (HPLC) was used for the separation and quantitation of aflatoxins. Treatment for 2 hours by the chemicals affected the destruction of aflatoxins and the most effective chemical was 10% sodium hypochlorite (p<0.05). Sodium hypochlorite concentrations more than 1% significantly reduced aflatoxin B$_{2}$, G$_{1}$, G$_{2}$ and total aflatoxins and more than 3% reduced B$_{1}$ (p<0.05). No further significant decreases were observed above the concentration of 5% for all 4 aflatoxins. Complete destruction of aflatoxins B$_{2}$, G_{1}$, and G$_{2}$ was achieved by 5% sodium hypochlorite at 48 hours and B$_{1}$ at 72 hours.

  • PDF

Storage Stability of the Commercial Hydrogen Peroxide, Sodium Hypochlorite, Glutaraldehyde and Didecyl Dimethyl Ammonium Chloride (DDAC) (시판 Hydrogen Peroxide, Sodium Hypochlorite, Glutaraldehyde 및 Didecyl Dimethyl Ammonium Chloride (DDAC)의 보존 안전성)

  • Park, Kyung-Hee;Kim, Seok-Ryel;Kang, So-Young;Jung, Sung-Ju;Kim, Heung-Yun;Kim, Do-Hyung;Oh, Myung-Joo
    • Journal of Aquaculture
    • /
    • v.21 no.3
    • /
    • pp.172-175
    • /
    • 2008
  • We evaluated storage stability of hydrogen peroxide, sodium hypochlorite, glutaraldehyde and didecyl dimethyl ammonium chloride (DDAC). Hydrogen peroxide and DDAC have been stabilized for 6-month storage at room temperature and $4^{\circ}C$ after opening. However sodium hypochlorite and glutaraldehyde were degraded to 15% and 39% for 6 month storage at $4^{\circ}C$ after opening, respectively. Therefore we have to take special attention wherever long term storing hydrogen peroxide and DDAC, also organic contents and pH in water should be considered for effective application in fish farms.

Chlorhexidine gel associated with papain in pulp tissue dissolution

  • Couto De Oliveira, Gabriel;Ferraz, Caio Souza;Andrade Junior, Carlos Vieira;Pithon, Matheus Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.38 no.4
    • /
    • pp.210-214
    • /
    • 2013
  • Objectives: This study aimed to evaluate the capacity of 2% chlorhexidine gel associated with 8% papain gel in comparison with 5.25% sodium hypochlorite in bovine pulp tissue dissolution. Materials and Methods: Ninety bovine pulps of standardized sizes were used and fragmented into 5-mm sizes. The fragments were removed from the root middle third region. They were divided into 6 experimental groups (n = 15), 1) 8% papain; 2) 2% chlorhexidine; 3) 2% chlorhexidine associated with 8% papain; 4) 0.9% saline solution; 5) 2.5% sodium hypochlorite; and 6) 5.25% sodium hypochlorite. The pulp fragments were weighed and put into immobile test tubes for dissolution for time intervals of 30, 60, 90, and 120 min. Results: The 5.25% sodium hypochlorite had greater dissolution potential than the pure papain, and when associated with chlorhexidine, both promoted greater dissolution than did the saline solution and 2% chlorhexidine groups (p < 0.05). The 2.5% sodium hypochlorite promoted dissolution to a lesser extent than the groups with papain within a period of 30 min (p < 0.05), but, was comparable to the saline solution and chlorhexidine. After 120 min, the 2.5% and 5.25% sodium hypochlorite promoted dissolution of 100% of the pulp fragments, and papain, 61%, while chlorhexidine associated with papain and chlorhexidine alone dissolved only 55% and 3%, respectively. Conclusions: The 8% papain in gel, both alone and in association with chlorhexidine, was able to dissolve bovine pulp tissue, but to a lesser extent than did 5.25% sodium hypochlorite.

Disinfection Characteristics of Waterborne Pathogenic Protozoa Giardia lamblia

  • Kim, Kyongjoo;Wooksun Hong;Lee, Kisay
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.95-99
    • /
    • 2001
  • Giardia lamblia is a parasitic protozoa which is transmitted in the form of a cyst through untreated water and also treated drinking water. Since its presence in water has led to frequent outbreaks of giardiasis and death in many countries, the removal and disinfection of this protozoan cyst from the water supply are of great concern for public health. This study examined the disinfection characteristics of G. lamblia cysts isolated from a Korean patient with giardiasis. When using sodium hypochlorite including 5 or 10 ppm chlorine, the killing rate was initially rapid, however, the disinfection slowed down and a 3log reduction could not be achieved even after 2h. The disinfection effectiveness was also reduced at a lower temperature, thereby implying that the risk o a giardiasis outbreak will be higher in the winter season. A CT (concentration$.$time) curve was constructed based on the results with sodium hypochlorite for use in designing and predicting disinfection performance. The organic chlorination disinfectant SDIS (sodium dichloroisocyanurate) produced a lower pH and a much higher residual effect than sodium hypochlorite. The disinfection of cysts by SDIC continued steadily throughout 2h of contact, although the initial killing rate was lower than that with sodium hypochlorite.

  • PDF

A Consideration of Hydrazine Syntheses (Hydrazine 合成의 一考察)

  • Lee, Hac-Ki
    • Journal of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1961
  • It is important to study hydrazine because of the development of new uses for its derivatives. The Rasching method is the only satisfactory one for synthesizing hydrazine; it involves the oxidation of ammonia by sodium hypochlorite in the presence of some such catalyst as gelatin. Calcium hypochlorite was substituted for the sodium hypochlorite particularly in this work, applying agar-agar as catalyst. The results of the experiments are as follow: 1. The yield is proportional to the mole-ratio of ammonia to available chlorine in calcium hypochlorite and about 60% is obtained when the ratio is 20. 2. Agar-agar can be used as a catalyst and its proper concentration in the solution is 0.005%. 3. Proper concentration of available chlorine in the reaction solution is 0.23 mole/l. 4. The most effective condition for the reaction is a temperature of $60{\sim}65^{\circ}C.$ maintained for $20{\sim}25min$. 5. The reaction takes place equally well in either an open or closed container. 6. When calcium hypochlorite is applied in place of sodium hypochlorite, the yield of hydrazine is increased as much as 17%. 7. The yield of hydrazine is decreased by eliminating the suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite. 8. When $Ca(OH)_2$ is added to Rasching process, the yield of hydrazine is raised normally. 9. The fact that some metal ions, such as $Cu^{++},$ inhibit the formation of hydrazine was proved. 10. The suspension of $Ca(OH)_2$ acted as a remarkable adsorbent for $Cu^{++}$ like gelatin. The suspension of $Ca(OH)_2$ which results from the use of calcium hypochlorite acts as a catalyst, absorbing metal ions, to increase the yield of hydrazine. So I think that calcium hypochlorite is a more efficient oxidant than sodium hypochlorite in hydrazine syntheses.

  • PDF

Efficacy of Sodium Hypochlorite against E. coli on Various Leafy Green and Stem Vegetables (차아염소산나트륨이 비가열 엽경채류 중 병원성 대장균 사멸에 미치는 영향)

  • Su-jin Kim;Woo-Suk Bang
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.31-36
    • /
    • 2023
  • This study was conducted to evaluate the efficacy of sodium hypochlorite in eliminating Escherichia coli strains from leafy green and stem vegetables, which are frequently sold at community service centers. A cocktail of non-pathogenic E. coli and enterohaemorrhagic E. coli (E. coli O157:H7) was used to artificially contaminate the vegetables (initial numbers of bacteria 7-8 log CFU/g). The contaminated vegetables were soaked in sodium hypochlorite for 5 min and then washed three times with running water. After the treatment, number of viable bacterial cells on the vegetables was estimated. Sodium hypochlorite treatment reduced the E. coli population by 1-2 log CFU/g on leafy green and stem vegetables, a significant reduction from the initial number. Further, sodium hypochlorite showed better antimicrobial efficacy for leaves with a larger surface area, less roughness, and softness. There was no significant difference in the antimicrobial effect between 100 and 200 mg/kg of sodium hypochlorite. Therefore, it is not necessary to increase sodium hypochlorite concentration than the level suggested in the school meal hygiene management guidelines. However, sodium hypochlorite treatment is not sufficient to achieve a safe level of microorganisms on leafy green and stem vegetables since they generally have a high abundance of microorganisms on their surface. Thus, an alternative cooking method for fresh leafy green and stem vegetables in summer should be developed to ensure they are safe for consumption.

Localization Development of On-Site High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치 국산화 개발)

  • Kim, Jung Sik;Shin, Hyun Su;Lee, Eun Kyoung;Jung, Bong Ik
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.83-90
    • /
    • 2013
  • The purpose of this study is to replace existing liquid chlorine with localization of on-site high (12%) sodium hypochlorite generation system. On-site high (12%) sodium hypochlorite generation system is higher the current efficiency of 38.7%, 54.6% reduction of salt consumption, and 97.3% lower rate of chlorate than on-site low (0.8%) sodium hypochlorite generation system.