• Title/Summary/Keyword: Socket Joint

Search Result 38, Processing Time 0.023 seconds

A Study on Life Estimation of a Precision Forging Die (정밀단조 금형의 수명 평가에 관한 연구)

  • Choi C.H.;Lee S.H.;Jung K.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1587-1590
    • /
    • 2005
  • A rigid-plastic finite element analysis for the die forging process of a socket ball joint, which is used in the transportation system, was carried out. And also with the results, the elastic stress analysis for the forging die was performed in order to get basic data for the die life prediction. The die fatigue life prediction was simulated using Goodman's and Gerber's equation. The prediction technique for the fatigue life of a forged product, the socket ball joint, using DEFORM-3D is presented and the results are commented upon. Archard's wear model was used for the wear simulation and then the wear simulation and then the wear quantity was quantity was evaluated using volume. In order to prove the wear simulation results to be reliable, wear quantity of the real forging die set in used a forging factory was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

  • PDF

Finite Element Simulation on Prediction of an Asymmetric Hot Forging Die Life Based on Wear (마멸에 기초한 비대칭 열간단조 금형수명 예측에 관한 유한요소 시뮬레이션)

  • Choi, Chang-Hyok;Jung, Kyung-Bin;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.47-54
    • /
    • 2013
  • The main cause of die failure in hot forging is wear. Die wear directly generates the gradual loss of part tolerances, thereby causing deterioration in the dimensional accuracy of a forged part. It is very important to estimate forging cycles, called as die life, at which the die should be repaired or replaced. In this study, in order to estimate the hot forging die life, the finite element simulation of wear on an asymmetric part like a ball joint socket used in vehicle was carried out based on Archard's model. Finite element simulation results were compared with wear amounts of a used die that were measured using a contact stylus profilometer. The simulation results were in relatively good agreement with measurements obtained from the virtual die which was used by 7,000 forging cycles in a forging industry. Consequently, the die life in the hot forging of the ball joint socket was estimated by 10,500 forging cycles on the finisher die.

Design of Preform in the Forging Process of the Ball-Joint Socket (볼조인트 소켓 단조 공정의 예비형상 설계)

  • Park C. H.;Lee S. R.;Shin H. K.;Yang D. Y.;Park Y. B.;Ahn B. G.;Kim Y. H.;Bae M. H.;Chung S. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.224-227
    • /
    • 2001
  • The preform design in metal forging plays a key role in improving product quality, such as ensuring defect-free property and proper metal flow. In industry, preforms are generally designed by the iterative trial-and-error approach, but this approach leads not only to significant tool cost but also to the down-time of the production equipment. It is thus necessary to reduce the time and the man-power through an effective method of perform design. In this paper, the equi-potential lines designed in the electric field are introduced to find the preform shape. The equi-potential lines obtained by the arrangement of the initial and final shapes are utilized for the design of the preform, and then applied for obtaining a fine preform in the foging process of the ball-joint socket.

  • PDF

Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis (차량용 볼조인트의 최악 조건을 고려한 강건 설계)

  • Sin, Bong-Su;Kim, Seong-Uk;Kim, Jong-Kyu;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

Extracting 3D Geometry Parameters of Hip Joint for Designing a Custom-Made Hip Implant (맞춤형 인공관절 설계를 위한 인체 고관절의 3차원 형상 정보 추출)

  • Seo, Jeong-Woo;Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.200-208
    • /
    • 2008
  • Total Hip Replacement(THR) is a surgical procedure that replaces a diseased hip joint with a prosthesis. A plastic or metal cup forms the socket, and the head of the femur is replaced by a metal ball on a stem placed inside the femur. Due to the various types and shapes of human hip joint of every individual, a selected commercial implant sometimes may not be the best-fit to a patient, or it cannot be applied because of its discrepancy. Hence extracting geometry parameters of hip joint is one of the most crucial processes in designing custom-made implants. This paper describes the framework of a methodology to extract the geometric parameters of the hip joint. The parameters include anatomical axis, femoral head, head offset length, femoral neck, neck shaft angle, anteversion, acetabulum, and canal flare index. The proposed system automatically recommends the size and shape of a custom-made hip implant with respect to the patient's individual anatomy from 3D models of hip structures. The proposed procedure creating these custom-made implants with some typical examples is precisely presented and discussed in this paper.

Bilateral anterior dislocation in the hips: a case report

  • Dheeraj Makkar;Ravi Sauhta
    • Journal of Trauma and Injury
    • /
    • v.36 no.1
    • /
    • pp.70-73
    • /
    • 2023
  • The hip is a stable ball-and-socket joint. Bilateral anterior dislocations of the native hip joints account for fewer than 1% of all dislocations. We present a unique case of a bilateral anterior dislocation in a patient who presented to our institution within 6 hours of trauma. The dislocations were promptly reduced under propofol anesthesia in the operating room. The patient did not suffer a concurrent fracture. After the procedure, we performed regular X-ray examinations for 2 years to rule out the development of avascular necrosis of the head of the femur. The course of the patient was unremarkable.

Structural Stability Analysis of One-Touch Insertion Type Pipe Joint for Refrigerant (냉매용 원터치 삽입식 파이프 조인트의 안전성 구조해석)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the structural stability of the 6.35 and 15.88 socket models, which are integrated insert type connectors developed by a company, using FEM. For structural analysis, HyperMesh as pre-processor, HYPER VIEW as post-processor, and LS-DYNA as solver were used. Result: In the case of 6.35 socket, the maximum stresses at hook, holder and hinge were 95.02MPa, 19.59MPa and 44.01MPa, respectively, and in case of 15.88 socket, it was 127.7 MPa, 40.09MPa and 45.23MPa, respectively. Conclusion: Comparing the stress distribution of the two socket models, the stress in the 15.88 socket, which has a relatively large outer diameter, appears to be large overall, but it is significantly lower than the yield stress of each material, indicating that there is no problem in structural safety in both models.

Unilateral Talonavicular Coalition: A Case Report (편측성 거주상 골결합증: 증례 보고)

  • Ahn, Jungtae;Moon, Myung-Sang;Sung, Ki-Sun;Kwon, Ki-Tae
    • Journal of Korean Foot and Ankle Society
    • /
    • v.20 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Tarsal coalition is an abnormal union between two or more bones of the hind- and mid-feet, which can occur at various rates from cartilaginous to osseous union. Talonavicular coalition is reported less frequently than calcaneonavicular or talocalcaneal coalition and has been associated with various abnormalities, including symphalangism, clinodactyly, ray anomaly, clubfoot, other tarsal coalitions, and a ball-and-socket ankle joint. Patients with talonavicular coalitions are usually asymptomatic and rarely require surgical treatment. We review the literature and report on a case of 59-year-old male patient with talonavicular coalition.

A Parametric Study for Estimating the Side Performance of Drilled Piers Socketed in Smeared Rock (스미어 현상이 발생한 암반에 근입된 현장타설말뚝의 주변부 거동예측을 위한 변수분석)

  • Kim, Hongtaek;Nam, Yelwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.5-13
    • /
    • 2008
  • Just as infill material can reduce the shear strength of a rock joint, a layer of soft material between concrete and the surrounding rock socket can reduce pile shaft resistance of drilled shafts socketed in rocks. This can also result from construction methods that leave smeared or remoulded rock or drilling fluid residue on the sides of the rock sockets after concrete placement. The nature of the interface between the concrete pile shaft and the surrounding rock is critically important to the performance of the pile, and is heavily influenced by construction practice. Characteristics of the concrete-rock interface, such as roughness and the presence of the soft materials deposited during or after construction can significantly affect the shaft resistance response of the pile. In this study, we conducted the parametric study to examine the performance characteristics of drilled shafts socketed in smeared rock under the vertical load with the code of finite difference method of FLAC 2D. As the results of the current research, the parameters that affect the settlement of the pile head and the ultimate unit shaft resistance could be identified.

  • PDF

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.