• Title/Summary/Keyword: Socket Ball Joint

Search Result 22, Processing Time 0.024 seconds

A Study on Life Estimation of a Precision Forging Die (정밀단조 금형의 수명 평가에 관한 연구)

  • Choi C.H.;Lee S.H.;Jung K.B.;Kim Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1587-1590
    • /
    • 2005
  • A rigid-plastic finite element analysis for the die forging process of a socket ball joint, which is used in the transportation system, was carried out. And also with the results, the elastic stress analysis for the forging die was performed in order to get basic data for the die life prediction. The die fatigue life prediction was simulated using Goodman's and Gerber's equation. The prediction technique for the fatigue life of a forged product, the socket ball joint, using DEFORM-3D is presented and the results are commented upon. Archard's wear model was used for the wear simulation and then the wear simulation and then the wear quantity was quantity was evaluated using volume. In order to prove the wear simulation results to be reliable, wear quantity of the real forging die set in used a forging factory was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

  • PDF

Finite Element Simulation on Prediction of an Asymmetric Hot Forging Die Life Based on Wear (마멸에 기초한 비대칭 열간단조 금형수명 예측에 관한 유한요소 시뮬레이션)

  • Choi, Chang-Hyok;Jung, Kyung-Bin;Kim, Yohng-Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.4
    • /
    • pp.47-54
    • /
    • 2013
  • The main cause of die failure in hot forging is wear. Die wear directly generates the gradual loss of part tolerances, thereby causing deterioration in the dimensional accuracy of a forged part. It is very important to estimate forging cycles, called as die life, at which the die should be repaired or replaced. In this study, in order to estimate the hot forging die life, the finite element simulation of wear on an asymmetric part like a ball joint socket used in vehicle was carried out based on Archard's model. Finite element simulation results were compared with wear amounts of a used die that were measured using a contact stylus profilometer. The simulation results were in relatively good agreement with measurements obtained from the virtual die which was used by 7,000 forging cycles in a forging industry. Consequently, the die life in the hot forging of the ball joint socket was estimated by 10,500 forging cycles on the finisher die.

Design of Preform in the Forging Process of the Ball-Joint Socket (볼조인트 소켓 단조 공정의 예비형상 설계)

  • Park C. H.;Lee S. R.;Shin H. K.;Yang D. Y.;Park Y. B.;Ahn B. G.;Kim Y. H.;Bae M. H.;Chung S. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.224-227
    • /
    • 2001
  • The preform design in metal forging plays a key role in improving product quality, such as ensuring defect-free property and proper metal flow. In industry, preforms are generally designed by the iterative trial-and-error approach, but this approach leads not only to significant tool cost but also to the down-time of the production equipment. It is thus necessary to reduce the time and the man-power through an effective method of perform design. In this paper, the equi-potential lines designed in the electric field are introduced to find the preform shape. The equi-potential lines obtained by the arrangement of the initial and final shapes are utilized for the design of the preform, and then applied for obtaining a fine preform in the foging process of the ball-joint socket.

  • PDF

3D FEM Analysis of Warm Forging Process Design for Socket at Automotive Steering Unit (자동차 조향장치용 소???R의 온간단조 공정 설계를 위한 3차원 유한요소해석)

  • Lee Y. S.;Lee J. H.;Lee J. Y.;Bae M. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.186-189
    • /
    • 2001
  • In keeping with the needs of the times for energy and labor saving and simplifying production processes, interests has been growing in warm forging. Moreover, it is interested in increasing the material usage and production amounts. To improve the productivity and material usage, it is studied the process design of warm forging for socket. Until now, socket is manufactured by hot forging in hammer. The percentage of material usage is under $60\%$ in hammer forging. On the other han4 the percentage can be increased over $90\%$ in warm forging. To change the process from hot forging to warm forging, process designs must be performed. In this time, by using the FEM package, DEFORM-3D, we could get the shape of 1st process and minimum sealing pressure. They are very essential design data to decrease the trial and error. Practically, the overlap defect could be detected and eliminated with design modification of rib height and fillet radius. Moreover, forging load and minimum sealing pressure was defined by the 3D FEM analysis.

  • PDF

Bilateral anterior dislocation in the hips: a case report

  • Dheeraj Makkar;Ravi Sauhta
    • Journal of Trauma and Injury
    • /
    • v.36 no.1
    • /
    • pp.70-73
    • /
    • 2023
  • The hip is a stable ball-and-socket joint. Bilateral anterior dislocations of the native hip joints account for fewer than 1% of all dislocations. We present a unique case of a bilateral anterior dislocation in a patient who presented to our institution within 6 hours of trauma. The dislocations were promptly reduced under propofol anesthesia in the operating room. The patient did not suffer a concurrent fracture. After the procedure, we performed regular X-ray examinations for 2 years to rule out the development of avascular necrosis of the head of the femur. The course of the patient was unremarkable.

Correlation between sway magnitude and joint reaction force during postural balance control (자세 균형 제어 시 동요의 강도와 관절 반발력의 상관관계)

  • 서민좌;조원학;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1160-1165
    • /
    • 2004
  • The purpose of this study was to calculate three dimensional angular displacements, moments and joint reaction forces of the ankle joint during the waist pulling, and to assess the ankle joint reaction forces according to different perturbation modes and different levels of perturbation magnitude. Ankle joint model was assumed 3-D ball and socket joint which is capable of three rotational movements. We used 6 cameras, force plate and waist pulling system. Two different waist pulling systems were adopted for forward sway with three magnitudes each. From motion data and ground reaction forces, we could calculate 3-D angular displacements, moments and joint reaction forces during the recovery of postural balance control. From the experiment using falling mass perturbation, joint moments were larger than those from the experiment using air cylinder pulling system with milder perturbation. However, JRF were similar nevertheless the difference in joint moment. From this finding, we could conjecture that the human body employs different strategies to protect joints by decreasing joint reaction forces, like using the joint movement of flexion or extension or compensating joint reaction force with surrounding soft tissues. Therefore, biomechanical analysis of human ankle joint presented in this study is considered useful for understanding balance control and ankle injury mechanism.

  • PDF

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.

Extracting 3D Geometry Parameters of Hip Joint for Designing a Custom-Made Hip Implant (맞춤형 인공관절 설계를 위한 인체 고관절의 3차원 형상 정보 추출)

  • Seo, Jeong-Woo;Jun, Yong-Tae
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.3
    • /
    • pp.200-208
    • /
    • 2008
  • Total Hip Replacement(THR) is a surgical procedure that replaces a diseased hip joint with a prosthesis. A plastic or metal cup forms the socket, and the head of the femur is replaced by a metal ball on a stem placed inside the femur. Due to the various types and shapes of human hip joint of every individual, a selected commercial implant sometimes may not be the best-fit to a patient, or it cannot be applied because of its discrepancy. Hence extracting geometry parameters of hip joint is one of the most crucial processes in designing custom-made implants. This paper describes the framework of a methodology to extract the geometric parameters of the hip joint. The parameters include anatomical axis, femoral head, head offset length, femoral neck, neck shaft angle, anteversion, acetabulum, and canal flare index. The proposed system automatically recommends the size and shape of a custom-made hip implant with respect to the patient's individual anatomy from 3D models of hip structures. The proposed procedure creating these custom-made implants with some typical examples is precisely presented and discussed in this paper.

Unilateral Talonavicular Coalition: A Case Report (편측성 거주상 골결합증: 증례 보고)

  • Ahn, Jungtae;Moon, Myung-Sang;Sung, Ki-Sun;Kwon, Ki-Tae
    • Journal of Korean Foot and Ankle Society
    • /
    • v.20 no.1
    • /
    • pp.36-38
    • /
    • 2016
  • Tarsal coalition is an abnormal union between two or more bones of the hind- and mid-feet, which can occur at various rates from cartilaginous to osseous union. Talonavicular coalition is reported less frequently than calcaneonavicular or talocalcaneal coalition and has been associated with various abnormalities, including symphalangism, clinodactyly, ray anomaly, clubfoot, other tarsal coalitions, and a ball-and-socket ankle joint. Patients with talonavicular coalitions are usually asymptomatic and rarely require surgical treatment. We review the literature and report on a case of 59-year-old male patient with talonavicular coalition.

Development of the Spherical Flange used in a Cryogenic High Pressure Pipe (극저온 고압 배관용 구형 플랜지 개발)

  • Moon, Il-Yoon;Moon, In-Sang;Yoo, Jae-Han;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.283-288
    • /
    • 2011
  • The spherical flange was designed to apply to a cryogenic high pressure pipe of the Liquid Rocket Engine. It is designed that the spherical flange is able to be assembled and kept airtight upto $2.5^{\circ}$ of the axial misalignment between the combined components. It increases the degree of freedom of the engine assembly. The spherical flange is composed of a ball and socket joint, a metal seal and spherical type bolts, washers. The prototype was verified by leak test at the room temperature and the cryogenic temperature. Additionally the strength test and the destructive test were performed at the room temperature.

  • PDF