• 제목/요약/키워드: Socially Intelligent Agent

검색결과 2건 처리시간 0.016초

3단계의 사고 작용 모델을 응용한 사회적 감성지능 에이전트 프레임워크 (Framework for Socially Intelligent Agent using Three-Layered Affect Functioning Model)

  • 신헌용;우운택
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.522-527
    • /
    • 2008
  • 사회적 감성 에이전트는 인간과 유사한 사회지능(Social Intelligence)을 가지고 있는 에이전트로서, 인간의 감정을 인지 및 학습하고 적응을 통하여 상대방의 감정과 상함에 따라 적절한 반응을 할 수 있는 능력을 가기고 있다. 이 에이전트는 인간이 에이전트를 더 살아 있는 것처럼(Believable) 느끼게 하여, 인간과 컴퓨터간의 상호작용을 도와줌으로써 인간에게 더욱더 개인화되고 적합한 서비스 창출하고 제공할 수 있는 에이전트 모델이다. 본 논문에서는 인간의 사고 과정과 동일한 3단계 사고 작용 모델(Three-Layered Affect Functioning Model)을 통해서, 에이전트가 사용자의 감정과 상황을 인식하여, 지능적 반응이나 행동을 가능하게 하는 프레임워크를 제안한다. 그리고 에이전트의 감정과 상황인식을 위해서는 심리학 모델인 OCC 모델과 결정트리 구성 알고리즘인 ID3를 활용하였다. 이를 통해서 교육, 예술, 연예, 디자인, 의료 등 다양한 분야에서 응용될 수 있는 사회적 감성지능형 에이전트를 개발할 수 있을 것으로 기대 된다.

  • PDF

Wearable Computers

  • Cho, Gil-Soo;Barfield, Woodrow;Baird, Kevin
    • 섬유기술과 산업
    • /
    • 제2권4호
    • /
    • pp.490-508
    • /
    • 1998
  • One of the latest fields of research in the area of output devices is tactual display devices [13,31]. These tactual or haptic devices allow the user to receive haptic feedback output from a variety of sources. This allows the user to actually feel virtual objects and manipulate them by touch. This is an emerging technology and will be instrumental in enhancing the realism of wearable augmented environments for certain applications. Tactual displays have previously been used for scientific visualization in virtual environments by chemists and engineers to improve perception and understanding of force fields and of world models populated with the impenetrable. In addition to tactual displays, the use of wearable audio displays that allow sound to be spatialized are being developed. With wearable computers, designers will soon be able to pair spatialized sound to virtual representations of objects when appropriate to make the wearable computer experience even more realistic to the user. Furthermore, as the number and complexity of wearable computing applications continues to grow, there will be increasing needs for systems that are faster, lighter, and have higher resolution displays. Better networking technology will also need to be developed to allow all users of wearable computers to have high bandwidth connections for real time information gathering and collaboration. In addition to the technology advances that make users need to wear computers in everyday life, there is also the desire to have users want to wear their computers. In order to do this, wearable computing needs to be unobtrusive and socially acceptable. By making wearables smaller and lighter, or actually embedding them in clothing, users can conceal them easily and wear them comfortably. The military is currently working on the development of the Personal Information Carrier (PIC) or digital dog tag. The PIC is a small electronic storage device containing medical information about the wearer. While old military dog tags contained only 5 lines of information, the digital tags may contain volumes of multi-media information including medical history, X-rays, and cardiograms. Using hand held devices in the field, medics would be able to call this information up in real time for better treatment. A fully functional transmittable device is still years off, but this technology once developed in the military, could be adapted tp civilian users and provide ant information, medical or otherwise, in a portable, not obstructive, and fashionable way. Another future device that could increase safety and well being of its users is the nose on-a-chip developed by the Oak Ridge National Lab in Tennessee. This tiny digital silicon chip about the size of a dime, is capable of 'smelling' natural gas leaks in stoves, heaters, and other appliances. It can also detect dangerous levels of carbon monoxide. This device can also be configured to notify the fire department when a leak is detected. This nose chip should be commercially available within 2 years, and is inexpensive, requires low power, and is very sensitive. Along with gas detection capabilities, this device may someday also be configured to detect smoke and other harmful gases. By embedding this chip into workers uniforms, name tags, etc., this could be a lifesaving computational accessory. In addition to the future safety technology soon to be available as accessories are devices that are for entertainment and security. The LCI computer group is developing a Smartpen, that electronically verifies a user's signature. With the increase in credit card use and the rise in forgeries, is the need for commercial industries to constantly verify signatures. This Smartpen writes like a normal pen but uses sensors to detect the motion of the pen as the user signs their name to authenticate the signature. This computational accessory should be available in 1999, and would bring increased peace of mind to consumers and vendors alike. In the entertainment domain, Panasonic is creating the first portable hand-held DVD player. This device weight less than 3 pounds and has a screen about 6' across. The color LCD has the same 16:9 aspect ratio of a cinema screen and supports a high resolution of 280,000 pixels and stereo sound. The player can play standard DVD movies and has a hour battery life for mobile use. To summarize, in this paper we presented concepts related to the design and use of wearable computers with extensions to smart spaces. For some time, researchers in telerobotics have used computer graphics to enhance remote scenes. Recent advances in augmented reality displays make it possible to enhance the user's local environment with 'information'. As shown in this paper, there are many application areas for this technology such as medicine, manufacturing, training, and recreation. Wearable computers allow a much closer association of information with the user. By embedding sensors in the wearable to allow it to see what the user sees, hear what the user hears, sense the user's physical state, and analyze what the user is typing, an intelligent agent may be able to analyze what the user is doing and try to predict the resources he will need next or in the near future. Using this information, the agent may download files, reserve communications bandwidth, post reminders, or automatically send updates to colleagues to help facilitate the user's daily interactions. This intelligent wearable computer would be able to act as a personal assistant, who is always around, knows the user's personal preferences and tastes, and tries to streamline interactions with the rest of the world.

  • PDF