• 제목/요약/키워드: Social big data analysis

검색결과 731건 처리시간 0.033초

개인정보보호법에 기반한 빅데이터 활용 방안 연구 (A study on Utilization of Big Data Based on the Personal Information Protection Act)

  • 김병철
    • 디지털융복합연구
    • /
    • 제12권12호
    • /
    • pp.87-92
    • /
    • 2014
  • 최근 대규모 데이터 처리와 다양한 형태의 데이터 처리 기술이 진화함에 따라 사회문제 진단 및 현안 해결 도구로써 빅데이터의 잠재력에 주목하고 있다. 동시에 빅데이터의 위험요소로 프라이버시 문제가 강력하게 제기되고 있기도 하다. 빅데이터의 적극적인 활용과 프라이버시 문제는 서로 상충되는 관례로써 본 논문에서는 이와 관련한 당면한 문제점을 지적하고, 해외 선진국의 사례분석을 통해 우리나라의 개인정보보호에 기반한 빅데이터 활용방안을 제안하고자 한다.

특허분석을 위한 빅 데이터학습 (A Big Data Learning for Patent Analysis)

  • 전성해
    • 한국지능시스템학회논문지
    • /
    • 제23권5호
    • /
    • pp.406-411
    • /
    • 2013
  • 빅 데이터는 여러 분야에서 다양한 개념으로 사용된다. 예를 들어, 컴퓨터학과 사회학에서 빅 데이터에 대한 접근방법에 차이가 있지만, 데이터분석 관점에서는 공통적인 부분을 갖는다. 즉, 공학이든 사회과학이든 빅 데이터에 대한 분석은 반드시 필요하다. 통계학과 기계학습은 빅 데이터의 분석을 위한 대표적인 분석도구이다. 본 논문에서는 빅 데이터분석을 위한 학습도구에 대하여 알아보고 검색된 빅 데이터 원천에서부터 분석을 거쳐 최종적으로 분석결과를 사용하는 전체과정에 대하여 효율적인 빅 데이터학습 절차에 대하여 제안한다. 특히, 대표적인 빅 데이터 구조를 갖고 있는 특허문서에 대하여 빅데이터학습을 적용하여 특허분석을 수행하고 이 결과를 기술예측에 적용하는 방법에 대하여 연구한다. 제안방법에 대한 실제적용을 위하여 전 세계 특허청으로부터 빅 데이터 관련 특허문서를 검색하여 텍스트 마이닝의 전처리와 통계학의 다중선형회귀분석을 이용한 구체적인 빅 데이터학습에 대한 사례연구를 수행하였다.

A Study on Change in Perception of Community Service and Demand Prediction based on Big Data

  • Chun-Ok, Jang
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.230-237
    • /
    • 2022
  • The Community Social Service Investment project started as a state subsidy project in 2007 and has grown very rapidly in quantitative terms in a short period of time. It is a bottom-up project that discovers the welfare needs of people and plans and provides services suitable for them. The purpose of this study is to analyze using big data to determine the social response to local community service investment projects. For this, data was collected and analyzed by crawling with a specific keyword of community service investment project on Google and Naver sites. As for the analysis contents, monthly search volume, related keywords, monthly search volume, search rate by age, and gender search rate were conducted. As a result, 10 items were found as related keywords in Google, and 3 items were found in Naver. The overall results of Google and Naver sites were slightly different, but they increased and decreased at almost the same time. Therefore, it can be seen that the community service investment project continues to attract users' interest.

빅데이터를 이용한 기술 시장동향 예측 (Forecasting Market trends of technologies using Bigdata)

  • 최미선;조용확;김진화
    • 산업융합연구
    • /
    • 제21권10호
    • /
    • pp.21-28
    • /
    • 2023
  • 오늘날 빅데이터 활용의 필요성이 증가하면서 개인, 기업, 국가 등에서 SNS 데이터를 포함해 빅데이터를 이용한 다양한 분석 활동들이 이루어지고 있다. 그러나 기존 기술 시장 동향 예측연구는 전문가에 의존적이거나 특허나 문헌 연구 기반 데이터를 이용한 연구가 주로 진행되어 왔으며 빅데이터를 활용한 객관적인 기술 예측이 필요하다. 이에 본 연구는 소셜네트워크서비스(SNS)의 데이터로 의사결정나무 분석, 시각화 분석, 백분율 분석을 통해 미래 기술을 예측하는 모델을 제시하고자 한다. 연구 결과 백분율 분석은 다른 분석 결과에 비해 긍정적인 기술을 더 잘 예측할 수 있었고, 시각화 분석은 다른 분석 결과에 비해 부정적인 기술을 더 잘 예측할 수 있었다. 의사결정나무 분석도 의미 있는 예측은 가능하였다.

중소병원 환자의료서비스에 관한 관심 이슈 도출을 위한 SNS 빅 데이터 텍스트 마이닝과 사회적 연결망 적용 (Extracting of Interest Issues Related to Patient Medical Services for Small and Medium Hospital by SNS Big Data Text Mining and Social Networking)

  • 황상원
    • 한국병원경영학회지
    • /
    • 제23권4호
    • /
    • pp.26-39
    • /
    • 2018
  • Purposes: The purpose of this study is to analyze the issue of interest in patient medical service of small and medium hospitals using big data. Methods: The method of this study was implemented by data mining and social network using SNS big data. The analysis tool were extracted key keywords and analyzed correlation by using Textom, Ucinet6 and NetDraw program. Findings: In the results of frequency, the network-centered and closeness centrality analysis, It was shown that the government center is interested in the major explanations and evaluations of the technology, information, security, safety, cost and problems of small and medium hospitals, coping with infections, and actual involvement in bank settlement. And, were extracted care for disabilities such as pediatrics, dentistry, obstetrics and gynecology, dementia, nursing, the elderly, and rehabilitation. Practical Implications: Future studies will be more useful if analyzed the needs of customers for medical services in the metropolitan area and provinces may be different in the small and medium hospitals to be studied, further classification studies.

공학교육 빅 데이터 분석 도구 개발 연구 (Research on the Development of Big Data Analysis Tools for Engineering Education)

  • 김윤영;김재희
    • 공학교육연구
    • /
    • 제26권4호
    • /
    • pp.22-35
    • /
    • 2023
  • As information and communication technology has developed remarkably, it has become possible to analyze various types of large-volume data generated at a speed close to real time, and based on this, reliable value creation has become possible. Such big data analysis is becoming an important means of supporting decision-making based on scientific figures. The purpose of this study is to develop a big data analysis tool that can analyze large amounts of data generated through engineering education. The tasks of this study are as follows. First, a database is designed to store the information of entries in the National Creative Capstone Design Contest. Second, the pre-processing process is checked for analysis with big data analysis tools. Finally, analyze the data using the developed big data analysis tool. In this study, 1,784 works submitted to the National Creative Comprehensive Design Contest from 2014 to 2019 were analyzed. As a result of selecting the top 10 words through topic analysis, 'robot' ranked first from 2014 to 2019, and energy, drones, ultrasound, solar energy, and IoT appeared with high frequency. This result seems to reflect the current core topics and technology trends of the 4th Industrial Revolution. In addition, it seems that due to the nature of the Capstone Design Contest, students majoring in electrical/electronic, computer/information and communication engineering, mechanical engineering, and chemical/new materials engineering who can submit complete products for problem solving were selected. The significance of this study is that the results of this study can be used in the field of engineering education as basic data for the development of educational contents and teaching methods that reflect industry and technology trends. Furthermore, it is expected that the results of big data analysis related to engineering education can be used as a means of preparing preemptive countermeasures in establishing education policies that reflect social changes.

빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식 (Social perception of the Arduino lecture as seen in big data)

  • 이은상
    • 정보교육학회논문지
    • /
    • 제25권6호
    • /
    • pp.935-945
    • /
    • 2021
  • 이 연구의 목적은 빅데이터 분석 방법을 이용하여 아두이노 강의에 대한 사회적 인식을 분석하는 데 있다. 이를 위해 네이버 사이트의 블로그, 카페, 뉴스 채널에서 '아두이노+강의'를 검색 키워드로 2012년 1월부터 2021년 5월까지의 데이터를 텍스톰 사이트로 수집하였다. 수집된 데이터는 텍스톰 사이트를 이용하여 정제하였으며, 텍스톰 사이트, Ucinet 6, Netdraw 프로그램을 이용하여 텍스트 마이닝 분석과 의미 연결망 분석을 수행하였다. 빈도 분석, TF-IDF 분석, 연결 중심성 등의 텍스트 마이닝 분석 결과 '교육', '코딩' 등이 상위 키워드임을 확인하였다. 의미 연결망 분석을 위해 CONCOR 분석을 수행한 결과 '아두이노 관련 교육', '피지컬 컴퓨팅 관련 강의', '아두이노 특강', 'GUI 프로그래밍' 등 4개의 군집을 확인할 수 있다. 이 연구를 통해 인터넷상에서 아두이노 강의와 관련하여 일반 대중들의 여러 가지 의미 있는 사회적 인식을 확인할 수 있었다. 이 연구의 결과는 아두이노 강의를 준비하는 교수자나 해당 주제를 연구하는 연구자, 나아가 소프트웨어 교육이나 코딩 교육과 관련 정책을 수립하는 정책 입안자들에게 의미 있는 시사점을 제공하는 자료로 활용될 것이다.

빅데이터 분석을 활용한 스마트팩토리 연구 동향 분석 (Analysis of Smart Factory Research Trends Based on Big Data Analysis)

  • 이은지;조철호
    • 품질경영학회지
    • /
    • 제49권4호
    • /
    • pp.551-567
    • /
    • 2021
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on smart factories by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on smart factories. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "SMART FACTORY" and "Smart Factory" as search terms, and the titles and Korean abstracts were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, 739 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; Smart factory research slowed down from 2005 to 2014, but until 2019, research increased rapidly. According to the analysis by fields, smart factories were studied in the order of engineering, social science, and complex science. There were many 'engineering' fields in the early stages of smart factories, and research was expanded to 'social science'. In particular, since 2015, it has been studied in various disciplines such as 'complex studies'. Overall, in keyword analysis, the keywords such as 'technology', 'data', and 'analysis' are most likely to appear, and it was analyzed that there were some differences by fields and years. Conclusion: Government support and expert support for smart factories should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to smart factories. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

빅데이터를 활용한 "조리학원"의 의미연결망 분석에 관한 연구 (A Study on the Semantic Network Analysis of "Cooking Academy" through the Big Data)

  • 이승후;김학선
    • 한국조리학회지
    • /
    • 제24권3호
    • /
    • pp.167-176
    • /
    • 2018
  • In this study, Big Data was used to collect the information related to 'Cooking Academy' keywords. After collecting all the data, we calculated the frequency through the text mining and selected the main words for future data analysis. Data collection was conducted from Google Web and News during the period from January 1, 2013 to December 31, 2017. The selected 64 words were analyzed by using UCINET 6.0 program, and the analysis results were visualized with NetDraw in order to present the relationship of main words. As a result, it was found that the most important goal for the students from cooking school is to work as a cook, likewise to have practical classes. In addition, we obtained the result that SNS marketing system that the social sites, such as Facebook, Twitter, and Instagram are actively utilized as a marketing strategy of the institute. Therefore, the results can be helpful in searching for the method of utilizing big data and can bring brand-new ideas for the follow-up studies. In practical terms, it will be remarkable material about the future marketing directions and various programs that are improved by the detailed curriculums through semantic network of cooking school by using big data.

포스트 코로나19 시대의 패션 소비문화에 대한 빅데이터 분석 -중국 패션 네트워크인 LADYMAX.cn의 기사를 중심으로- (Fashion Consumption Culture in the Post-COVID-19 Era Identified through Big Data Analysis -Focusing on Articles in the Chinese Fashion Network LADYMAX.cn-)

  • 빈삼;염혜정;심수인
    • 패션비즈니스
    • /
    • 제25권2호
    • /
    • pp.80-97
    • /
    • 2021
  • In this study, the changes in fashion consumption culture in the post-COVID-19 era were examined through big data analysis. Considering that the Chinese market plays a pivotal role in the global fashion industry, big data was collected in the most famous and professional fashion network in China, LADYMAX.cn. As a result of text mining and social network analysis, three major changes were identified as the emerging fashion consumption culture in the post-COVID-19 era. First, as a trend in new media consumption, COVID-19 disease and the development of digital technology tended to encourage consumers to put more importance on the relationship between bloggers and fans than previously. Second, as a trend in reward consumption, consumers tended to be rewarded for their hard work to relieve and comfort their high stress caused by spending a long time worrying about the prolonged COVID-19 situation. Third, as a trend in home-economy consumption, consumers tended to prefer homewear and sportswear more because they were spending longer times at home as the social distancing period was prolonged.