• 제목/요약/키워드: Social Networks Service (SNS)

검색결과 52건 처리시간 0.017초

트윗 데이터를 활용한 IT 트렌드 분석 (An Analysis of IT Trends Using Tweet Data)

  • 이진백;이충권;차경진
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.143-159
    • /
    • 2015
  • 불확실한 환경변화에 대처하고 장기적 전략수립을 위해 기업에게 있어서 IT 트렌드에 대한 예측은 오랫동안 중요한 주제였다. IT 트렌드에 대한 예측을 기반으로 새로운 시대에 대한 인식을 하고 예산을 배정하여 빠르게 변화하는 기술의 추세에 대비할 수 있기 때문이다. 해마다 유수의 컨설팅업체들과 조사기관에서 차년도 IT 트렌드에 대해서 발표되고는 있지만, 이러한 예측이 실제로 차년도 비즈니스 현실세계에서 나타났는지에 대한 연구는 거의 없었다. 본 연구는 현존하는 빅데이터 기술을 활용하여 서울지역을 중심으로 지난 8개월동안(2013년 5월1일부터 2013년12월31까지) 정보통신산업진흥원과 한국정보화진흥원에서 2012년 말에 발표한 IT 트렌드 토픽이 언급된 21,589개의 트윗 데이터를 수집하여 분석하였다. 또한 2013년에 나라장터에 올라온 프로젝트들이 IT트렌드 토픽과 관련이 있는지 상관관계분석을 실시하였다. 연구결과, 빅데이터, 클라우드, HTML5, 스마트홈, 테블릿PC, UI/UX와 같은 IT토픽은 시간이 지날수록 매우 빈번하게 언급되어졌으며, 이 같은 토픽들은 2013년 나라장터 공고 프로젝트 데이터와도 매우 유의한 상관관계를 가지고 있는 것을 확인할 수 있었다. 이는 전년도(2012년)에 예측한 트렌드들이 차년도(2013년)에 실제로 트위터와 한국정부의 공공조달사업에 반영되어 나타나고 있는 것을 의미한다. 본 연구는 최신 빅데이터툴을 사용하여, 유수기관의 IT트렌드 예측이 실제로 트위터와 같은 소셜미디에서 생성되는 트윗데이터에서 얼마나 언급되어 나타나는지 추적했다는 점에서 중요한 의의가 있고, 이를 통해 트위터가 사회적 트랜드의 변화를 효율적으로 추적하기에 유용한 도구임을 확인하고자 할 수 있었다.

영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법 (Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation)

  • 유띳로따낙;누르지드;하인애;조근식
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.57-77
    • /
    • 2013
  • 소셜 미디어는 모바일 어플리케이션과 웹에서 가장 많이 사용되는 미디어 중 하나이다. Nielsen사의 보고서에 따르면 소셜 네트워크 서비스와 블로그가 온라인 사용자의 주 활동 공간으로 사용되고 있으며, 미국인 중에서 온라인 활동이 왕성한 5명의 사용자중 4명은 매일 소셜 네트워크 서비스와 블로그를 방문하고 온라인 활동 시간의 23%를 소비한다고 집계하고 있다. 미국의 인터넷 사용자들은 야후, 구글, AOL 미디어 네트워크, 트위터, 링크드인 등과 같은 소셜 네트워크 서비스중 페이스북에서 가장 많은 시간을 소비한다. 최근에는 대부분의 회사들이 자신의 특정 상품에 대하여 "페이스북 페이지(Facebook Page)"를 생성하고 상품에 대한 프로모션을 진행한다. 페이스북에서 제공되는 "좋아요" 옵션은 페이스북 페이지를 통해 자신이 관심을 가지는 상품(아이템)을 표시하고 그 상품을 지지할 수 있도록 한다. 많은 영화를 제작하는 영화 제작사들도 페이스북 페이지와 "좋아요" 옵션을 이용하여 영화 프로모션과 마케팅에 이용한다. 일반적으로 다수의 스트리밍 서비스 제공업들도 영화와 TV 프로그램을 즐기며 볼 수 있는 서비스를 사용자들에게 제공한다. 이 서비스는 일반 컴퓨터와 TV 등의 단말기에서인터넷을 통해 영화와 TV 프로그램을 즉각적으로 제공할 수 있다. 스트리밍 서비스의 선두 주자인 넷플릭스는 미국, 라틴 아메리카, 영국 그리고 북유럽 국가 등에 3천만 명 이상의 스트리밍 사용자가 가입되어 있다. 또한 넥플릭스는 다양한 장르로 구성된 수백만 개의 영화와 TV 프로그램을 보유하고 있다. 하지만 수많은 콘텐츠로 인해 사용자들은 자신이 선호하는 장르에 관련된 영화와 TV 프로그램을 찾기 위해 많은 시간을 소비해야 된다. 많은 연구자들이 이러한 사용자의 불편함을 줄이기 위해 아이템에 대한 사용자가 보지 않은 아이템에 대한 선호도를 예측하고 높은 예측값을 갖는 아이템을 사용자에게 제공하기 위한 추천 시스템을 적용하였다. 협업적 여과 방법은 추천 시스템을 구축하기 위해 가장 많이 사용되는 방법이다. 협업적 여과 시스템은 사용자들이 평가한 아이템을 기반으로 각 사용자 간의 유사도를 측정하고 목적 사용자와 유사한 성향을 가진 사용자 그룹을 결정한다. 군집된 그룹은 이웃 사용자 집단으로 불리며 이를 이용하여 특정 아이템에 대한 선호도를 예측하고, 예측 값이 높은 아이템을 목적 사용자에게 추천해 준다. 협업적 여과 방법이 적용되는 분야는 서적, 음악, 영화, 뉴스 및 비디오 등 다양하지만 논문에서는 영화에 초점을 맞춘다. 이 협업적 여과 방법이 추천 시스템 내에서 유용하게 활용되고 있지만 아직 "희박성 문제"와 "콜드 스타트 문제" 등 해결해야 할 과제가 남아있다. 희박성 문제는 아이템의 수가 증가할수록 아이템에 대한 사용자의 로그 밀도가 감소하는 것이다. 즉, 전체 아이템 수에 비해 사용자가 아이템에 대해 평가한 정보가 충분하지 않기 때문에 사용자의 성향을 파악하기 어렵고, 이로 인해 사용자가 아직 평가하지 않은 아이템에 대해서 선호도를 추측하기 어려운 것을 말한다. 이 희박성 문제가 포함된 경우 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자들에게 제공되는 아이템 추천의 질이 떨어지게 된다. 콜드 스타트 문제는 시스템 내에 새로 들어온 사용자 또는 아이템으로 지금까지 한 번도 평가를 하지 않은 경우에 발생한다. 즉, 사용자가 평가한 아이템에 대한 정보가 전혀 포함되어 있지 않거나 매우 적기 때문에 이러한 경우 또한 적합한 이웃 사용자 집단을 형성하는데 어려움을 겪게 되고 사용자가 평가하지 않은 아이템에 대한 선호도 예측의 정확성이 감소되게 된다. 본 논문에서는 영화 추천 시스템에서 발생될 수 있는 초기 사용자 문제를 해결하기 위하여 사용자가 평가한 영화와 소셜 네트워크 서비스로부터 추출된 사용자 선호 장르를 활용하여 사용자 군집을 형성하고 이를 활용하는 방법을 제안한다. 소셜 네트워크 서비스로부터 사용자가 선호하는 영화 장르를 추출하기 위해 페이스북 페이지의 '좋아요' 옵션을 이용하며, 이 '좋아요' 정보를 분석하여 사용자의 영화 장르 관심사를 추출한다. 페이스북의 영화 페이지는 각 영화를 위한 페이스북 페이지로 구성되고 있으며, 사용자는 자신의 선호도에 따라서 "좋아요" 옵션을 선택할 수 있다. 사용자의 페이스북 정보는 페이스북 그래프 API를 활용하여 추출되고 이로부터 사용자 선호 영화를 알 수 있게 된다. 시스템에서 활용되는 영화 정보는 인터넷 영화 데이터베이스인 IMDb로부터 획득한다. IMDb는 수많은 영화와 TV 프로그램을 보유하고 있으며, 각 영화에 관련된 배우 정보, 장르 및 부가 정보들을 포함한다. 논문에서는 사용자가 "좋아요" 표시를 한 영화 페이지를 이용하여 IMDb로부터 영화 장르 정보를 가져온다. 그리고 추출된 영화 장르 선호도와 본 시스템에서 제안하는 영화 평가 항목을 이용하여 유사한 이웃 사용자 집단을 구성한 후, 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고, 높은 예측 값을 갖는 아이템을 사용자에게 추천한다. 본 논문에서 제안한 사용자의 선호 장르 기반의 사용자 군집 기법을 이용한 시스템을 평가하기 위해서 IMDb 데이터 집합을 이용하여 사용자 영화 평가 시스템을 구축하였고 참가자들의 영화 평가 정보를 획득하였다. 페이스북 영화 페이지 정보는 참가자들의 페이스북 계정과 페이스북 그래프 API를 통해 획득하였다. 사용자 영화 평가 시스템을 통해 획득된 사용자 데이터를 제안하는 방법에 적용하였고 추천 성능, 품질 및 초기 사용자 문제를 벤치마크 알고리즘과 비교하여 평가하였다. 실험 평가의 결과 제안하는 방법을 적용한 추천 시스템을 통해 추천의 품질을 10% 향상시킬 수 있었고, 초기 사용자 문제에 대해서 15% 완화시킬 수 있음을 볼 수 있었다.