최근 전 세계적으로 COVID-19이 유행하는 상황 속에서 이와 관련된 가짜뉴스가 심각한 사회적 혼란을 야기하고 있다. 이러한 배경에서 가짜뉴스를 정확하게 탐지하기 위해, 뉴스가 소셜 미디어를 통해 파급되는 과정과 같은 소셜 컨텍스트 정보를 활용하는 소셜 컨텍스트 기반 탐지 기법들이 널리 사용되고 있다. 그러나 대부분의 기 구축된 가짜뉴스 탐지를 위한 데이터들은 뉴스 자체의 내용 정보 위주로 구성되어, 소셜 컨텍스트 정보를 거의 포함하지 않는다. 즉, 이 데이터들에는 소셜 컨텍스트 기반 탐지 기법을 적용할 수 없으며, 이러한 데이터의 한계는 가짜뉴스 탐지 연구 분야의 발전을 저해하는 방해 요소이다. 본 논문은 이러한 한계를 극복하기 위해, 기존의 저명한 가짜뉴스 데이터인 CoAID 데이터를 기반으로, 소셜 컨텍스트 정보를 추가적으로 수집하여, CoAID 데이터의 뉴스 내용 정보와 해당 뉴스들의 소셜 컨텍스트 정보를 모두 포함하는 CoAID+ 데이터를 구축한다. 본 논문에서 구축한 CoAID+ 데이터는 기존의 대부분의 소셜 컨텍스트 기반 탐지 기법들에 적용될 수 있으며, 향후 새로운 소셜 컨텍스트 기반 탐지 기법들에 대한 연구도 더욱 활성화시킬 수 있을 것으로 기대된다. 마지막으로, 본 논문은 다양한 관점에서 CoAID+ 데이터를 분석하여 진짜뉴스와 가짜뉴스의 파급 패턴 및 키워드에 따른 파급 패턴도 파악하여 소개한다.
Objectives: A content analysis was conducted to examine whether the current school textbooks providing smoking information are effective or not. Methods: The authors reviewed 111 qualified textbooks using elementary through high schools during 2006-2007 academic year in Korea. Educational components were coded with an analysis tool developed through the present research. Result: Tobacco education components were narrowly focused on long-term physiological consequences of tobacco use, addictiveness, and harmful ingredients and they were repetitively shown in the textbooks. Negative health consequences such as lung cancer were emphasized 10 times among 12 smoking-related textbooks. Educational messages or contents are mainly based on medical knowledge (72%) rather than psycho-social components. The US school-based smoking prevention programs, however, employ psycho-social approach with cognitive and life-skill components and they contain only 7-17% of smoking-related medical knowledge. In order to increase psycho-social smoking prevention components in Korean textbooks, the present study identified social subjects of textbooks (and relating core sessions) for elementary, middle, and high school. It also provided guidelines for school instructors to use. Conclusion: Adolescent smoking behavior is not caused by the deficit of health information, but mostly by social influences including media and peer pressure. School textbooks proving smoking information need to increase psycho-social context. One of the most effective ways as a psycho-social smoking prevention program is to use social subjects (or curriculum) of textbooks such as social studies, ethics, social cultures, social environment, and home management.
Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
스마트미디어저널
/
제6권3호
/
pp.41-48
/
2017
Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.
With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.
Amid the flood of data, social network analysis is beneficial in searching for its hidden context and verifying several pieces of information. This can be used for detecting the spread model of infectious diseases, methods of preventing infectious diseases, mining of small groups and so forth. In addition, community detection is the most studied topic in social network analysis using graph analysis methods. The objective of this study is to examine signed attributed social networks and identify the maximal balanced cliques that are both absolute and fair. In the same vein, the purpose is to ensure fairness in complex networks, overcome the "information cocoon" bottleneck, and reduce the occurrence of "group polarization" in social networks. Meanwhile, an empirical study is presented in the experimental section, which uses the personal information of 77 employees of a research company and the trust relationships at the professional level between employees to mine some small groups with the possibility of "group polarization." Finally, the study provides suggestions for managers of the company to align and group new work teams in an organization.
Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
International Journal of Computer Science & Network Security
/
제22권5호
/
pp.294-302
/
2022
Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.
최근 모바일 장치를 통한 마이크로 블로그 활용이 늘고 있지만, 모바일 장치가 지닌 하드웨어 제약으로 인해 여전히 모바일 정보 브라우징에 어려움이 있다. 이를 해결하기 위해 모바일 사용자의 컨텍스트 정보를 활용하여 사용자의 관심 정보를 추론하는 연구가 활발히 진행되고 있다. 본 논문에서는 모바일 사용자의 컨텍스틀 이용하여 마이크로 블로그의 토픽을 추천하는 방법을 제안한다. 마이크로 블로그에서 사용자와 연관된 토픽을 추출하기 위해 제안한 방법은 사용자 위치, 행동, 기존에 작성한 블로그 그리고 사회적 관계 등의 사용자 컨텍스트를 모바일 장치로 부터 얻어 활용한다. 모바일 장치로부터 얻어온 컨텍스트는 마이크로 블로그 검색 범위를 줄이는데 뿐만 아니라 사용자의 관심을 추론하는 경우에도 활용된다. 추론된 사용자의 선호도를 기반으로 검색된 결과의 우선순위를 다시 결정한다. 제안한 방법을 통해 모바일 사용자들은 사용자가 관심을 가질만한 토픽의 마이크로 블로그 정보를 얻을 수 있을 것으로 기대한다.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.312-318
/
2021
Lack of knowledge and digital skills is a threat to the information security of the state and society, so the formation and development of organizational culture of information security is extremely important to manage this threat. The purpose of the article is to assess the state of information security of the state and society. The research methodology is based on a quantitative statistical analysis of the information security culture according to the EU-27 2019. The theoretical basis of the study is the theory of defense motivation (PMT), which involves predicting the individual negative consequences of certain events and the desire to minimize them, which determines the motive for protection. The results show the passive behavior of EU citizens in ensuring information security, which is confirmed by the low level of participation in trainings for the development of digital skills and mastery of basic or above basic overall digital skills 56% of the EU population with a deviation of 16%. High risks to information security in the context of damage to information assets, including software and databases, have been identified. Passive behavior of the population also involves the use of standard identification procedures when using the Internet (login, password, SMS). At the same time, 69% of EU citizens are aware of methods of tracking Internet activity and access control capabilities (denial of permission to use personal data, access to geographical location, profile or content on social networking sites or shared online storage, site security checks). Phishing and illegal acquisition of personal data are the biggest threats to EU citizens. It have been identified problems related to information security: restrictions on the purchase of products, Internet banking, provision of personal information, communication, etc. The practical value of this research is the possibility of applying the results in the development of programs of education, training and public awareness of security issues.
Background: Breast cancer accounted for almost 25% of all cancers in women globally in 2012. Although breast cancer is the most prevalent cancer in India, there is no organised national breast cancer screening programme. Local studies on the burden of breast cancer are essential to develop effective context-specific strategies for an early detection breast cancer programme, considering the cultural and ethnic heterogeneity in India. This study examined the knowledge, attitudes, and practices about breast cancer in rural women in Central India. Materials and Methods: This community-based cross sectional study was conducted in Wardha district, located in Maharashtra state in Central India in 2013. The sample included 1000 women (609 rural, 391 urban) aged 13-50 years, selected as representative from each of the eight development blocks in the district, using stratified cluster sampling. Trained social workers interviewed women and collected demographic and socio-economic data. The instrument also assessed respondents' knowledge about breast cancer and its symptoms, risks, methods of screening, diagnosis and treatment, as well as their attitudes towards breast cancer and selfreported practices of breast cancer screening. Chi-square and t-test were applied to assess differences in the levels of knowledge, attitude, and practice (the outcome variables) between urban and rural respondents. Multivariable linear regression was conducted to analyse the relationship between socio-demographic factors and the outcome variables. Results: While about two-thirds of rural and urban women were aware of breast cancer, less than 7% in rural and urban areas had heard about breast self-examination. Knowledge about breast cancer, its symptoms, risk factors, diagnostic modalities, and treatment was similarly poor in both rural and urban women. Urban women demonstrated more positive attitudes towards breast cancer screening practices than their rural counterparts. Better knowledge of breast cancer symptoms, risk factors, diagnosis, and treatment correlated significantly with older age, higher levels of education, and being office workers or in business. Conclusions: Women in rural Central India have poor knowledge about breast cancer, its symptoms and risk factors. Breast self-examination is hardly practiced, though the willingness to learn is high. Positive attitudes towards screening provide an opportunity to promote breast self-examination.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.