• Title/Summary/Keyword: Social Big Data

Search Result 1,002, Processing Time 0.033 seconds

A Study on the Semantic Network Analysis of "Cooking Academy" through the Big Data (빅데이터를 활용한 "조리학원"의 의미연결망 분석에 관한 연구)

  • Lee, Seung-Hoo;Kim, Hak-Seon
    • Culinary science and hospitality research
    • /
    • v.24 no.3
    • /
    • pp.167-176
    • /
    • 2018
  • In this study, Big Data was used to collect the information related to 'Cooking Academy' keywords. After collecting all the data, we calculated the frequency through the text mining and selected the main words for future data analysis. Data collection was conducted from Google Web and News during the period from January 1, 2013 to December 31, 2017. The selected 64 words were analyzed by using UCINET 6.0 program, and the analysis results were visualized with NetDraw in order to present the relationship of main words. As a result, it was found that the most important goal for the students from cooking school is to work as a cook, likewise to have practical classes. In addition, we obtained the result that SNS marketing system that the social sites, such as Facebook, Twitter, and Instagram are actively utilized as a marketing strategy of the institute. Therefore, the results can be helpful in searching for the method of utilizing big data and can bring brand-new ideas for the follow-up studies. In practical terms, it will be remarkable material about the future marketing directions and various programs that are improved by the detailed curriculums through semantic network of cooking school by using big data.

Fashion Consumption Culture in the Post-COVID-19 Era Identified through Big Data Analysis -Focusing on Articles in the Chinese Fashion Network LADYMAX.cn- (포스트 코로나19 시대의 패션 소비문화에 대한 빅데이터 분석 -중국 패션 네트워크인 LADYMAX.cn의 기사를 중심으로-)

  • Bin, Sen;Yum, Haejung;Shim, Soo In
    • Journal of Fashion Business
    • /
    • v.25 no.2
    • /
    • pp.80-97
    • /
    • 2021
  • In this study, the changes in fashion consumption culture in the post-COVID-19 era were examined through big data analysis. Considering that the Chinese market plays a pivotal role in the global fashion industry, big data was collected in the most famous and professional fashion network in China, LADYMAX.cn. As a result of text mining and social network analysis, three major changes were identified as the emerging fashion consumption culture in the post-COVID-19 era. First, as a trend in new media consumption, COVID-19 disease and the development of digital technology tended to encourage consumers to put more importance on the relationship between bloggers and fans than previously. Second, as a trend in reward consumption, consumers tended to be rewarded for their hard work to relieve and comfort their high stress caused by spending a long time worrying about the prolonged COVID-19 situation. Third, as a trend in home-economy consumption, consumers tended to prefer homewear and sportswear more because they were spending longer times at home as the social distancing period was prolonged.

A Comparative Study on the Social Awareness of Metaverse in Korea and China: Using Big Data Analysis (한국과 중국의 메타버스에 관한 사회적 인식의 비교연구: 빅데이터 분석의 활용 )

  • Ki-youn Kim
    • Journal of Internet Computing and Services
    • /
    • v.24 no.1
    • /
    • pp.71-86
    • /
    • 2023
  • The purpose of this exploratory study is to compare the differences in public perceptual characteristics of Korean and Chinese societies regarding the metaverse using big data analysis. Due to the environmental impact of the COVID-19 pandemic, technological progress, and the expansion of new consumer bases such as generation Z and Alpha, the world's interest in the metaverse is drawing attention, and related academic studies have been also in full swing from 2021. In particular, Korea and China have emerged as major leading countries in the metaverse industry. It is a timely research question to discover the difference in social awareness using big data accumulated in both countries at a time when the amount of mentions on the metaverse has skyrocketed. The analysis technique identifies the importance of key words by analyzing word frequency, N-gram, and TF-IDF of clean data through text mining analysis, and analyzes the density and centrality of semantic networks to determine the strength of connection between words and their semantic relevance. Python 3.9 Anaconda data science platform 3 and Textom 6 versions were used, and UCINET 6.759 analysis and visualization were performed for semantic network analysis and structural CONCOR analysis. As a result, four blocks, each of which are similar word groups, were driven. These blocks represent different perspectives that reflect the types of social perceptions of the metaverse in both countries. Studies on the metaverse are increasing, but studies on comparative research approaches between countries from a cross-cultural aspect have not yet been conducted. At this point, as a preceding study, this study will be able to provide theoretical grounds and meaningful insights to future studies.

A Study on the Application of Spatial Big Data from Social Networking Service for the Operation of Activity-Based Traffic Model (활동기반 교통모형 분석자료 구축을 위한 소셜네트워크 공간빅데이터 활용방안 연구)

  • Kim, Seung-Hyun;Kim, Joo-Young;Lee, Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.44-53
    • /
    • 2016
  • The era of Big Data has come and the importance of Big Data has been rapidly growing. The part of transportation, the Four-Step Travel Demand Model(FSTDM), a traditional Trip-Based Model(TBM) reaches its limit. In recent years, a traffic demand forecasting method using the Activity-Based Model(ABM) emerged as a new paradigm. Given that transportation means the spatial movement of people and goods in a certain period of time, transportation could be very closely associated with spatial data. So, I mined Spatial Big Data from SNS. After that, I analyzed the character of these data from SNS and test the reliability of the data through compared with the attributes of TBM. Finally, I built a database from SNS for the operation of ABM and manipulate an ABM simulator, then I consider the result. Through this research, I was successfully able to create a spatial database from SNS and I found possibilities to overcome technical limitations on using Spatial Big Data in the transportation planning process. Moreover, it was an opportunity to seek ways of further research development.

Knowledge Creation Structure of Big Data Research Domain (빅데이터 연구영역의 지식창출 구조)

  • Namn, Su-Hyeon
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.129-136
    • /
    • 2015
  • We investigate the underlying structure of big data research domain, which is diversified and complicated using bottom-up approach. For that purpose, we derive a set of articles by searching "big data" through the Korea Citation Index System provided by National Research Foundation of Korea. With some preprocessing on the author-provided keywords, we analyze bibliometric data such as author-provided keywords, publication year, author, and journal characteristics. From the analysis, we both identify major sub-domains of big data research area and discover the hidden issues which made big data complex. Major keywords identified include SOCIAL NETWORK ANALYSIS, HADOOP, MAPREDUCE, PERSONAL INFORMATION POLICY/PROTECTION/PRIVATE INFORMATION, CLOUD COMPUTING, VISUALIZATION, and DATA MINING. We finally suggest missing research themes to make big data a sustainable management innovation and convergence medium.

An Youth-related Issues Analysis System Using Social Media and Big-data Mining Techniques (소셜미디어와 빅 데이터 마이닝 기술을 이용한 청소년 관련문제 분석시스템)

  • Seo, Ji Ea;Kim, Chgan Gi;Seo, Jeong Min
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2015.07a
    • /
    • pp.93-94
    • /
    • 2015
  • 본 논문에서는 학교 교육환경에서 청소년들에게 발생 할 수 있는소 셜미디어의 역기능을 빅 데이터 처리를 통하여 분석 할 수 있는 방법을 제시하고, 특히 악성 댓글을 위주로 한 청소년들 간의 소셜미디어를 중심으로 빅 데이터의 마이닝 기술을 활용하여 대표적인 청소년 문제의 확산을 방지 할 수 있는 시스템 제안한다.

  • PDF

Case Study on Big Data Sampling Population Collection Method Errors in Service Business (서비스 비즈니스의 빅데이터 모집단 산정방식 오류에 관한 사례연구)

  • Ahn, Jinho;Lee, Jeungsun
    • Journal of Service Research and Studies
    • /
    • v.10 no.2
    • /
    • pp.1-15
    • /
    • 2020
  • As big data become more important socially and economically in recent years, many problems have been derived from the indiscriminate application of big data. Big data are valuable because it can figure out the meaning of informative information hidden within the data. In particular, to predict customer behavior patterns and experiences, structured data that were extracted from Customer Relationship Management (CRM) or unstructured data that were extracted from Social Network Service(SNS) can be defined as a population to interpret the data, during which many errors can occur. However, those errors are usually overlooked. In addition to data analysis techniques, some data, which should be considered in the analysis, are not included in the population and thus do not show any meaningful patterns. Therefore, this study presents the measurement and interpretation of the data generated when the cause of error in the population setting is strong relationship and interaction between people or a person and an object. In other words, it will be shown that if the relationship and interaction are strong, it is important to include data collected from the perspective of user experience and ethnography in the population by comparing various cases of big data application, through which the meaning will be derived and the best direction will be suggested.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.

Comparing the Results of Big-Data with Questionnaire Survey (빅데이터 분석결과와 실증조사 결과의 비교)

  • Kim, Do-Goan;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2027-2032
    • /
    • 2016
  • The rapid diffusion of smart phones and the development of data storage and analysis technology have made the field of big-data a promising industry in the future. In the marketing field, big-data analysis on social data can be used for understanding the needs of consumers as an effective and efficient marketing tool. Before the age of big-data, companies had relied upon the traditional methods such as questionnaire survey and marketing test in which a small number of consumers had participated. The traditional methods have still been used. Although both of big-data analysis and traditional methods are useful to understand consumers. It is need to check whether the results from both include similar implications. In this point, this study attempts to compare the results of big-data analysis with that of questionnaire survey on some cosmetics brands methods. As the results of this study, both results of big-data analysis and questionnaire survey include similar implications.

A study on the applications and prospects of big data in the field of digital dental healthcare (디지털 덴탈 헬스케어 분야에서의 빅데이터 활용 전망에 대한 연구)

  • Jae-Kyung Ryu;Nam-Joong Kim;So-Min Kim;Sun-Kyoung Lee
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.42-48
    • /
    • 2024
  • Purpose: The purpose of this study is to investigate the applications and prospects of big data in digital dental healthcare. Methods: The study included 30 participants in the dental field (dentists, technicians, professors, and graduate students). From June 25 to 30, 2023, the contents of the study were thoroughly explained, consent was obtained from the research subjects, and a questionnaire was administered via an internet service. The questionnaires of 28 participants who responded completely were used for analysis. The collected data were statistically processed using IBM SPSS Statistics ver. 22.0 (IBM). Results: The use of big data in digital dental healthcare, digital dental health system, mobile dental health, dental health analysis, and telehealthcare were all heavily surveyed, with an average score of 3.97 or higher on a 5-point Likert scale. The areas where big data can be utilized in digital dental healthcare are as follows. The utilization rate for three-dimensional digital product development via linkage with big data systems and industrial field manufacturing technology was found to be 4.11±0.67, and the analysis of trends by age in the occurrence of various oral diseases was found to be 4.00±0.98. Conclusion: In the future, research into the viability of big data's success in the medical data field, which is directly related to human life, is needed. Additionally, social policies and regulations regarding big data-related information and standards in dental healthcare are necessary.